三乘积法则(triple product rule)是关于偏导数的一个恒等关系式,其表达式为:
- 注释:每一个变量可视作另外两个变量的函数。偏导数的下标表示在此变量为常数的条件下求导。
三乘积法则用于热力学关系式的推导。例如温度、压力和体积之间的关系满足:
![{\displaystyle \left({\frac {\partial p}{\partial T}}\right)_{V}\left({\frac {\partial V}{\partial p}}\right)_{T}\left({\frac {\partial T}{\partial V}}\right)_{p}=-1.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa375a5650ca1974a52df8aba4acbe90b0e3eaef)
利用三乘积法则,可以将不易测量的关系用容易测得的物理量代替,如:
。
下面给出一个非正式的推导。设有函数f(x, y, z) = 0。若将z表示为x和y的函数,则全微分dz等于
![{\displaystyle dz=\left({\frac {\partial z}{\partial x}}\right)_{y}dx+\left({\frac {\partial z}{\partial y}}\right)_{x}dy}](https://wikimedia.org/api/rest_v1/media/math/render/svg/20946f9c56cde2f4c82adfc970890b311f1d4b7d)
在dz = 0的轨迹上,x和y之间满足
![{\displaystyle dy=\left({\frac {\partial y}{\partial x}}\right)_{z}dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c2ab2a25f55fdb3279b6d90d0ea1c5222d5ec360)
于是将dz = 0带入上式,
![{\displaystyle 0=\left({\frac {\partial z}{\partial x}}\right)_{y}\,dx+\left({\frac {\partial z}{\partial y}}\right)_{x}\left({\frac {\partial y}{\partial x}}\right)_{z}\,dx}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3edad542b6c12dc9e72251310b696c12b3f55d8d)
重排得
![{\displaystyle \left({\frac {\partial z}{\partial x}}\right)_{y}=-\left({\frac {\partial z}{\partial y}}\right)_{x}\left({\frac {\partial y}{\partial x}}\right)_{z}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f04b8d6120124641051c2f77d7e4bdb195d003fe)
将所有偏导数移到等式左边,
![{\displaystyle \left({\frac {\partial x}{\partial y}}\right)_{z}\left({\frac {\partial y}{\partial z}}\right)_{x}\left({\frac {\partial z}{\partial x}}\right)_{y}=-1}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46374395888e37b111c83826ef8d05663a2ab7c7)
此证明假定了偏导数存在,以及全微分dz存在,偏导数不为零从而能取倒数。数学分析的正式证明能避免这些隐含假定。
- Elliott, JR, and Lira, CT. Introductory Chemical Engineering Thermodynamics, 1st Ed., Prentice Hall PTR, 1999. p. 184.
- Carter, Ashley H. Classical and Statistical Thermodynamics, Prentice Hall, 2001, p. 392.