跳转到内容

积分变换

维基百科,自由的百科全书

积分变换(integral transform)是数学中作用于函数的算子,用以处理微分方程等问题。常见的有傅里叶变换拉普拉斯变换等。

概述

[编辑]

以一变数函数 为例, 经过一积分转换 得到

其中 是个确定的二元函数, 称为此积分变换的核函数(kernel function)或(nucleus)。当选取不同的积分域和变换核时,就得到不同名称的积分变换。 称为象原函数, 称为 的象函数,在一定条件下,它们是一一对应而变换是可逆的。

有些积分变换有相对应的反积分变换(inverse transform),使得

称为反核(inverse kernel)。

积分变换表

[编辑]
积分变换 符号 核K f(t) t1 t2 反核K−1 u1 u2
阿贝尔积分变换英语Abel transform F, f u [1] t
相关 Legendre 变换(Associated Legendre transform)
傅里叶变换
傅里叶正弦变换 on , real-valued
傅里叶余弦变换 on , real-valued 0 0
汉克尔变换 0 0
Hartley变换英语Hartley transform
Hermite变换英语Hermite_transform
希尔伯特变换
Jacobi变换英语Jacobi_transform
Laguerre变换英语Laguerre_transform
拉普拉斯变换 e−ut 0
Legendre变换英语Legendre_transform_(integral_transform)
梅林变换 tu−1 0 [2]
双边拉普拉斯变换 e−ut
泊松核英语Poisson kernel 0
拉东变换
魏尔斯特拉斯变换英语Weierstrass transform
X-ray变换英语X-ray_transform
狄拉克δ函数

在反积分转换中, 常数c 由积分函数决定。

参见

[编辑]
  1. ^ Assuming the Abel transform is not discontinuous at .
  2. ^ Some conditions apply, see Mellin inversion theorem for details.