线性代数
|
|
向量 · 向量空间 · 基底 · 行列式 · 矩阵
|
|
|
克莱姆法则或克莱姆法则(英语:Cramer's rule / formula)是一个线性代数中的定理,用行列式来计算出线性等式组中的所有解。这个定理因加百列·克莱姆(1704年 - 1752年)的卓越使用而命名。在计算上,并非最有效率之法,因而在很多条等式的情况中没有广泛应用。不过,这一定理在理论性方面十分有效。
一个线性方程组可以用矩阵与向量的方程来表示:
其中的是一个的方块矩阵,而向量 是一个长度为n的行向量(中国大陆为列向量)。 也一样。
克莱姆法则说明:如果是一个可逆矩阵( ),那么方程(1)有解 ,其中
(1)
当中是列向量的第i行(行向量与列向量不一样,解释默认列向量)
当中是列向量取代了的第i列后得到的矩阵。为了方便,我们通常使用来表示,用来表示。所以等式(1)可以写成为:
- 。
设为一个环,就是一个包含的系数的矩阵。所以:
当中就是的行列式,以及就是单位矩阵。
对于元线性方程组
把系数矩阵 表示成行向量的形式
由于系数矩阵可逆,故方程组一定有解.
设,即
考虑的值,利用行列式的线性和交替性质,有
于是
运用克莱姆法则可以很有效地解决以下方程组。
已知:
使用矩阵来表示时就是:
当矩阵可逆时,x和y可以从克莱姆法则中得出:
- 以及
用3×3矩阵的情况亦差不多。
已知:
当中的矩阵表示为:
当矩阵可逆时,可以求出x、y和z:
- 、 以及
克莱姆法则在解决微分几何的问题时十分有用。
先考虑两条等式和。其中的u和v是需要考虑的变量,并且它们互不相关。我们可定义和。
找出一条等式适合是克莱姆法则的简单应用。
首先,我们要计算、、和的导数:
将和代入和,可得出:
因为和互不相关,所以和的系数都要等于0。所以等式中的系数可以被写成:
现在用克莱姆法则就可得到:
用两个雅可比矩阵来表示的方程:
用类似的方法就可以找到、以及。
克莱姆法则可以用来证明一些线性代数中的定理,当中的定理对环理论十分有用。
克莱姆法则可以用来证明一个线性规划问题有一个基本整数的解。这样使得线性规划的问题更容易被解决。
克莱姆法则在电子计算机出现后,被认为是难以实际用于计算的。当使用克莱姆法则计算一个阶线性方程组时,所需乘法次数为 次。例如求解25阶线性方程组时,总计乘法次数需要(即4.03×1026)次,若计算机每秒能计算100亿次,所需时间约12.79亿年。相比之下,高斯消元法只需3060次乘法,对计算机而言易如反掌。[1]