赖斯纳-努德斯特伦度规(英语:Reissner-Nordström metric)是广义相对论中描述描述静态球对称带电物体的引力场的度规,是广义相对论的一个著名的精确解,是赖斯纳(H. Reissner)以及努德斯特伦(G. Nordström)首先提出的。具有这样的度规形式的黑洞称为赖斯纳-努德斯特伦度规黑洞。
赖斯纳-努德斯特伦度规可以表示为:

电磁势为
。
可见电荷Q对度规的影响与r2成反比,是短程的,而引力质量的影响是长程的,因此一般情况下很少考虑电荷的作用。
|
---|
|
基础概念 | |
---|
现象 | |
---|
方程 | |
---|
进阶理论 | |
---|
精确解 | |
---|
近似解与数值模拟 | |
---|
科学家 | |
---|