跳转到内容

司坦唑醇

维基百科,自由的百科全书
司坦唑醇
临床资料
商品名英语Drug nomenclatureWinstrol, Stromba
其他名称Androstanazol; Androstanazole;Stanazol; WIN-14833; NSC-43193; NSC-233046; 17α-Methyl-2'H-5α-androst-2-eno[3,2-c]pyrazol-17β-ol;17α-Methylpyrazolo[4',3':2,3]-5α-androstan-17β-ol
AHFS/Drugs.comMultum消费者信息
怀孕分级
  • X
给药途径口服, 肌肉注射(动物)
药物类别雄激素; 同化类固醇
ATC码
法律规范状态
法律规范
药物动力学数据
生物利用度
药物代谢肝脏
生物半衰期口服: 9 小时
肌肉注射: 24 小时(水混悬液)
作用时间肌肉注射: 7 -10天
排泄途径尿液:89%
粪便:11%[1]
识别信息
  • (1S,3aS,3bR,5aS,10aS,10bS,12aS)-1,10a,12a-trimethyl-1,2,3,3a,3b,4,5,5a,6,7,10,10a,10b,11,12,12a-hexadecahydrocyclopenta[5,6]naphtho[1,2-f]indazol-1-ol
CAS号10418-03-8  checkY
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
CompTox Dashboard英语CompTox Chemicals Dashboard (EPA)
ECHA InfoCard100.030.801 编辑维基数据链接
化学信息
化学式C21H32N2O
摩尔质量328.49
3D模型(JSmol英语JSmol
  • [H][C@@]35CC[C@@]2([H])[C@]1([H])CC[C@](C)(O)[C@@]1(C)CC[C@]2([H])[C@@]3(C)Cc4c[nH]nc4C5
  • InChI=1S/C21H32N2O/c1-19-11-13-12-22-23-18(13)10-14(19)4-5-15-16(19)6-8-20(2)17(15)7-9-21(20,3)24/h12,14-17,24H,4-11H2,1-3H3,(H,22,23)/t14-,15+,16-,17-,19-,20-,21-/m0/s1 checkY
  • Key:LKAJKIOFIWVMDJ-IYRCEVNGSA-N checkY

司坦唑醇INNstanozolol),是一种从二氢睾酮衍生的合成代谢雄激素类固醇药物。它用于治疗遗传性血管性水肿[3][4][5]它由美国 斯特林制药公司英语Sterling Drug于 1962 年开发,并获得美国食品药品监督管理局批准用于人类使用,尽管已不再在美国销售。[4][6]它也用于兽医学[4][5]司坦唑醇已基本停产,目前仅在少数几个国家有售。[4][5]在人类中,它通过口服给药;而在动物中,则通过肌肉注射给药。[4]

与大多数注射用合成代谢雄激素类固醇不同,司坦唑醇未经过酯化反应,以水混悬液或口服片剂形式出售。[4]得益于C17α烷基化,该药物具有较高的口服生物利用度,从而使其在摄入后能够顺利通过肝脏的首过代谢[4][7]

司坦唑醇是常用作兴奋剂的合成代谢雄激素类固醇之一,在世界反兴奋剂机构的监管下,被禁止在体育比赛中使用。它是一种已知具有利尿作用的合成代谢雄激素类固醇。此外,司坦唑醇在美国赛马比赛中受到高度限制。[8][9]

医学用途

[编辑]

司坦唑醇通过促进血纤维蛋白溶解,已在治疗静脉功能不全中取得一定成效,且其对静脉疾病晚期皮肤病变(如脂肪皮肤硬化症英语Lipodermatosclerosis)的疗效进行了评估。多项随机试验表明,使用司坦唑醇可减轻脂肪皮肤硬化症病变范围、减轻皮肤增厚,并可能加快溃疡愈合。[10][11]此外,司坦唑醇目前正被研究用于治疗遗传性血管水肿骨质疏松症及骨骼肌损伤。[12][13]

非医疗用途

[编辑]

司坦唑醇被竞技运动员、健美运动员和力量举运动员用于提升体能和表现[4]

副作用

[编辑]

司坦唑醇的副作用包括雄性化肝毒性英语Hepatotoxicity心血管疾病高血压[4]

药理学性质

[编辑]

药效动力学

[编辑]

作为一种合成代谢雄激素类固醇,司坦唑醇是雄激素受体激动剂,与睾酮二氢睾酮等雄激素类似。[4][14]其对雄激素受体的亲和力约为双氢睾酮的22%。[15]由于司坦唑醇本身已进行5α-还原,因此不会成为5α还原酶底物,这意味着在皮肤毛囊前列腺等“雄激素敏感”组织中不会增强活性。[4][14]这使得司坦唑醇相比睾酮具有更高的合成代谢与雄激素活性比。[4][14]此外,基于其5α-还原特性,司坦唑醇不可芳香化,因此不会产生雌激素效应,如男性乳房发育体液潴留[4][14]司坦唑醇也不具有显著的孕激素活性。[4][14]由于17α-甲基结构的存在,其代谢过程存在空间位阻效应,这使得该药物具有口服生物活性,但同时也具有肝毒性英语Hepatotoxicity特征。[4][14]

药代动力学

[编辑]

司坦唑醇具有较高的口服生物利用度,这得益于其C17α烷基基团英语17α-Alkylated_anabolic_steroid的存在以及由此产生的对消化道及肝脏代谢的抗性。[14][16][17][18]该药物对人血清性激素结合球蛋白(SHBG)的亲和力极低,约为睾酮的5%、双氢睾酮的1%。[1]司坦唑醇在肝脏代谢,经历Ⅰ相羟基化英语Drug_metabolism#Phase_I_–_modification后,通过Ⅱ相反应英语Drug_metabolism#Phase_II_–_conjugation最终转化为葡糖苷酸结合物英语Glucuronidation硫酸酯化合物英语Sulfation,这些代谢物主要通过尿液和粪便排泄。[14][1][19]生物半衰期为口服为9小时,肌肉注射水混悬液时为24小时。[14][19]通过肌肉注射给药时,其作用持续时间可到7-10天。[1]

化学性质

[编辑]

司坦唑醇,又称17α-甲基-2'H-雄甾-2-烯[3,2-c]吡唑-17β-醇,是一种合成的17α-烷基化英语17α-Alkylated_anabolic_steroid雄烷类固醇,是二氢睾酮的衍生物。其分子结构特点包括C17α位置的甲基取代基和连接在甾体母核的A环上连接有吡唑[3]

合成

[编辑]

目前已发表多种司坦唑醇的化学合成方法。[20]例如17α-甲基化法吡唑环缩合法Birch还原法Oppenauer氧化法、过渡金属催化偶联法[21][22][23][24][25]

体液检测

[编辑]

司坦唑醇在体内会经历广泛的肝脏生物转化,通过多种酶促途径代谢。其主要代谢产物具有特异性,可在单次口服5–10毫克剂量后,在尿液中检测到长达10天。尿液样本的检测方法通常包括气相色谱-质谱联用法(GC-MS)或液相色谱-质谱联用法(LC-MS)。[26][27][28]

参考文献

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 Torres, L.H. Metabolic profile of stanozolol in human urine by liquid chromatography-electrospray ion trap mass spectrometry. Analytical and Bioanalytical Chemistry. 2011, 401 (3): 879–895. doi:10.1007/s00216-011-5132-y. 
  2. ^ Anvisa. RDC Nº 784 - Listas de Substâncias Entorpecentes, Psicotrópicas, Precursoras e Outras sob Controle Especial [Collegiate Board Resolution No. 784 - Lists of Narcotic, Psychotropic, Precursor, and Other Substances under Special Control]. Diário Oficial da União. 2023-03-31 (2023-04-04) [2023-08-15]. (原始内容存档于2023-08-03) (巴西葡萄牙语). 
  3. ^ 3.0 3.1 Index Nominum 2000: International Drug Directory. Taylor & Francis. 2000: 961–. ISBN 978-3-88763-075-1. 
  4. ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 Llewellyn W. Anabolics. Molecular Nutrition Llc. 2011: 726–737. ISBN 978-0-9828280-1-4. 
  5. ^ 5.0 5.1 5.2 Stanozolol: Uses, Dosage & Side Effects. Drugs.com. [2025-02-06] (英语). 
  6. ^ Drugs@FDA: FDA Approved Drug Products. www.accessdata.fda.gov. [2016-02-18]. (原始内容存档于2014-08-13). 
  7. ^ stanozolol (CHEBI:9249). www.ebi.ac.uk. [2025-02-06]. (原始内容存档于2022-12-13). 
  8. ^ Angst, Frank. Anabolic Steroids Still an Issue in U.S. Horse Racing. The Horse. 2015-02-13 [2025-02-06] (美国英语). 
  9. ^ Engber, Daniel. Win, Place, and Dope. Slate. 2009-05-01 [2025-02-06]. ISSN 1091-2339. (原始内容存档于2022-12-13) (美国英语). 
  10. ^ Burnand K, Clemenson G, Morland M, Jarrett PE, Browse NL. Venous lipodermatosclerosis: treatment by fibrinolytic enhancement and elastic compression. British Medical Journal. January 1980, 280 (6206): 7–11. PMC 1600523可免费查阅. PMID 6986945. doi:10.1136/bmj.280.6206.7. 
  11. ^ McMullin GM, Watkin GT, Coleridge Smith PD, Scurr JH. Efficacy of fibrinolytic enhancement with stanozolol in the treatment of venous insufficiency. The Australian and New Zealand Journal of Surgery. April 1991, 61 (4): 306–9. PMID 2018441. doi:10.1111/j.1445-2197.1991.tb00217.x. 
  12. ^ Sloane DE, Lee CW, Sheffer AL. Hereditary angioedema: Safety of long-term stanozolol therapy. The Journal of Allergy and Clinical Immunology. September 2007, 120 (3): 654–8. PMID 17765757. doi:10.1016/j.jaci.2007.06.037可免费查阅. 
  13. ^ Tingus SJ, Carlsen RC. Effect of continuous infusion of an anabolic steroid on murine skeletal muscle. Medicine and Science in Sports and Exercise. April 1993, 25 (4): 485–94. PMID 8479303. 
  14. ^ 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Kicman AT. Pharmacology of anabolic steroids. British Journal of Pharmacology. June 2008, 154 (3): 502–21. PMC 2439524可免费查阅. PMID 18500378. doi:10.1038/bjp.2008.165. 
  15. ^ Doods HN. Receptor Data for Biological Experiments: A Guide to Drug Selectivity. Ellis Horwood. 1991: 250. ISBN 978-0-13-767450-3. 
  16. ^ Maini AA, Maxwell-Scott H, Marks DJ. Severe alkalosis and hypokalemia with stanozolol misuse. The American Journal of Emergency Medicine. February 2014, 32 (2): 196.e3–4. PMID 24521609. doi:10.1016/j.ajem.2013.09.027. This case is important as stanozolol misuse is relatively common, due to its high oral bioavailability and perceived safety profile compared with other parenteral AAS. 
  17. ^ Bilezikian JP, Raisz LG, Rodan GA. Principles of Bone Biology, Two-Volume Set. Academic Press. 19 January 2002: 1455–. ISBN 978-0-08-053960-7. Androgenic compounds rendered resistant to gastrointestinal and liver metabolism by containing an alkyl group at the C17α position, such as stanozolol, are orally active. 
  18. ^ Herron A, Brennan TK. The ASAM Essentials of Addiction Medicine. Wolters Kluwer Health. 18 March 2015: 262–. ISBN 978-1-4963-1067-5. Testosterone has low oral bioavailability with only about half of an oral dose available after hepatic first-pass metabolism. Some analogues of testosterone (e.g., methyltestosterone, fluoxymesterone, oxandrolone, and stanozolol) resist such metabolism, so they can be given orally in smaller doses. 
  19. ^ 19.0 19.1 Schänzer, W. Metabolism of anabolic androgenic steroids. The Journal of Steroid Biochemistry and Molecular Biology. 2006, 102 (1-5): 184–195. doi:10.1016/j.jsbmb.2006.09.027. 
  20. ^ Pharmaceutical Manufacturing Encyclopedia. Elsevier. 22 October 2013: 3067–. ISBN 978-0-8155-1856-3. 
  21. ^ Steroid Hormone Synthesis via Grignard Alkylation. Journal of the American Chemical Society. 1959, 81: 1234–1240. doi:10.1021/ja01514a040. 
  22. ^ Synthesis of Heterocyclic Steroids: Stanozolol. Journal of Medicinal Chemistry. 1962, 5: 1023–1025. doi:10.1021/jm01240a008. 
  23. ^ Birch Reduction of Steroidal Dienes. Organic Syntheses. 1966, 46: 28. doi:10.15227/orgsyn.046.0028. 
  24. ^ Oxidation of Sterols. Steroid Reactions: An Outline for Organic Chemists. Reinhold Publishing. 1963. 
  25. ^ Palladium-Catalyzed Steroid Functionalization. Advanced Synthesis & Catalysis. 2010, 352: 2445–2452. doi:10.1002/adsc.201000432. 
  26. ^ Mateus-Avois L, Mangin P, Saugy M. Use of ion trap gas chromatography-multiple mass spectrometry for the detection and confirmation of 3'hydroxystanozolol at trace levels in urine for doping control. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. February 2005, 816 (1–2): 193–201. PMID 15664350. doi:10.1016/j.jchromb.2004.11.033. 
  27. ^ Pozo OJ, Van Eenoo P, Deventer K, Lootens L, Grimalt S, Sancho JV, et al. Detection and structural investigation of metabolites of stanozolol in human urine by liquid chromatography tandem mass spectrometry. Steroids. October 2009, 74 (10–11): 837–52. PMID 19464304. S2CID 36617387. doi:10.1016/j.steroids.2009.05.004. 
  28. ^ Baselt R. Disposition of Toxic Drugs and Chemicals in Man 8th. Foster City, CA: Biomedical Publications. 2008: 1442–3.