跳转到内容

ZC45病毒与ZXC21病毒

本页使用了标题或全文手工转换
维基百科,自由的百科全书
ZC45病毒与ZXC21病毒
病毒分类 编辑
(未分级) 病毒 Virus
域: 核糖病毒域 Riboviria
界: 正核糖病毒界 Orthornavirae
门: 小核糖病毒门 Pisuviricota
纲: 小南嵌套病毒纲 Pisoniviricetes
目: 套式病毒目 Nidovirales
科: 冠状病毒科 Coronaviridae
属: 乙型冠状病毒属 Betacoronavirus
亚属: SARS乙型冠状病毒亚属 Sarbecovirus
种:
毒株
ZC45病毒与ZXC21病毒 ZC45;ZXC21

ZC45病毒(SL-CoV ZC45)与ZXC21病毒(SL-CoV ZXC21),被部分媒体称为舟山蝙蝠病毒[1],皆为严重急性呼吸道综合征相关冠状病毒(SARSr-CoV)的病毒株,在中国浙江舟山小菊头蝠样本中发现,于2018年发表。这两个病毒株属于SARS-CoV-2的演化支[2],全基因组核酸序列与SARS-CoV-2的相似度约为88%[3][4],与SARS-CoV的相似度则约为81%[5]

发现

[编辑]

2015年至2017年间,研究人员在浙江舟山采集334只小菊头蝠样本,发现其中含有多种冠状病毒序列,其中有两个新病毒株(即ZC45与ZXC21)的基因组被完整定序,分别长29802与29732nt,彼此基因组序列相似度为97%。这两个病毒株的基因组序列与SARS-CoV相似度约为81%,刺突蛋白(S)氨基酸序列和SARS-CoV的相似度则为77%,皆低于Rs3367等数种较早发现的蝙蝠SARSr-CoV和SARS-CoV的相似度,且两病毒刺突蛋白的S1次单元氨基酸序列和其他蝙蝠SARSr-CoV差异较大,与其相似度最高者(Rs806)亦仅有83%。动物实验显示ZC45病毒可感染实验大鼠,在多个器官造成发炎,其中以组织最为明显[5]

与SARS-CoV-2的相似

[编辑]

2020年1月,2019冠状病毒病疫情甫爆发后,研究人员定序SARS-CoV-2的基因组,发现ZC45与ZXC21是当时已知核酸序列与SARS-CoV-2相似度最高的病毒,约有88%[注 1],高于SARS-CoV-2与SARS-CoV相似度的82%[2],共同组成一演化支,不过两病毒与与SARS-CoV-2在刺突蛋白的相似度较低,核酸序列的相似度约为75%,其中在S2次单元的相似度比S1次单元的高许多,在位于S1末端、与宿主细胞受体结合的受体结合结构域(receptor binding domain, RBD)相似度仅约60%,低于SARS-CoV-2与SARS-CoV在此的相似度(约74%)[4][6]

争议

[编辑]

2020年9月,前香港大学病毒学研究员闫丽梦在美国发表未经同行评审的论文,指控SARS-CoV-2并非自然产生,而是在实验室经改造ZC45与ZXC21(或称“舟山蝙蝠病毒”)而成的人造病毒,论文指出SARS-CoV-2基因组中的许多特征不见于其他冠状病毒,且ZC45与ZXC21的序列和其“十分相似”,很可能是制作SARS-CoV-2的来源模板,而与SARS-CoV-2关系接近、但在疫情爆发后才发表的RaTG13病毒RmYN02病毒穿山甲冠状病毒可能为虚构[7][8]。此论文的可信度受到诸多学者批评[9],许多病毒学家表示ZC45与ZXC21和SARS-CoV-2的序列差异大于10%,约有3500个碱基不同,差异已大到几乎不可能为人工制造[10],有学者并形容此论文为垃圾科学[11]

演化树

[编辑]

SARS-CoV-2与相关病毒株的系统发生树[12][13] :

Rc-o319 与SARS-CoV-2相似度81 % · 角菊头蝠 · 日本岩手县 (2013年采集、2020年发表)[14]

SL-ZXC21 88 % · 小菊头蝠 · 中华人民共和国浙江舟山(2015年采集、2018年发表)[5]

SL-ZC45 88 % · 小菊头蝠 · 中华人民共和国浙江舟山(2017年采集、2018年发表)[5]

Pangolin-CoV-GX 85.5 % · 马来穿山甲 · 东南亚 (2017年采集、2020年发表)[15]

Pangolin-CoV-GD 90.1 % · 马来穿山甲 · 东南亚 (2019年采集、2020年发表)[16]

RshSTT182 92.6 % · 扁颅菊头蝠英语Rhinolophus shameli · 柬埔寨上丁省 (2010年采集、2021年发表)[13]

RshSTT200 92.6 % · 扁颅菊头蝠 · 柬埔寨上丁省 (2010年采集、2021年发表)[13]

RacCS203英语RacCS203 91.5 % · 大角菊头蝠英语Rhinolophus acuminatus · 泰国差春骚府 (2020年采集、2021年发表)[12]

RmYN02 93.3 % · 马来亚菊头蝠 · 中华人民共和国云南勐腊 (2019年采集、2020年发表)[4]

RaTG13 96.2 % · 中菊头蝠 · 中华人民共和国云南墨江 (2013年采集、2020年发表)[17]

BANAL-52 96.8 % · 马来亚菊头蝠 · 老挝永珍省 (2020年采集、2022年发表)[18]

SARS-CoV-2 100 %

SARS-CoV 79%

  蝙蝠病毒
  穿山甲病毒
  人类病毒

注脚

[编辑]
  1. ^ 但后来发表的RaTG13病毒RmYN02病毒等基因组与SARS-CoV-2的相似度更高,分别为96.2%与93.3%[4]

参考文献

[编辑]
  1. ^ 林祖伟. 肺炎疫情:新冠病毒到底哪來的?科學界的幾種說法. BBC中文. 2020-04-03 [2021-01-20]. (原始内容存档于2020-07-30). 
  2. ^ 2.0 2.1 Jiang, Shibo; Du, Lanying; Shi, Zhengli. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies. Emerging Microbes & Infections. 2020, 9 (1): 275–277. ISSN 2222-1751. doi:10.1080/22221751.2020.1723441. 
  3. ^ Lau, Susanna K.P.; Luk, Hayes K.H.; Wong, Antonio C.P.; Li, Kenneth S.M.; Zhu, Longchao; He, Zirong; Fung, Joshua; Chan, Tony T.Y.; Fung, Kitty S.C.; Woo, Patrick C.Y. Possible Bat Origin of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases. 2020, 26 (7): 1542–1547. ISSN 1080-6040. doi:10.3201/eid2607.200092. 
  4. ^ 4.0 4.1 4.2 4.3 Zhou, Hong; Chen, Xing; Hu, Tao; Li, Juan; Song, Hao; Liu, Yanran; Wang, Peihan; Liu, Di; Yang, Jing; Holmes, Edward C.; Hughes, Alice C.; Bi, Yuhai; Shi, Weifeng. A Novel Bat Coronavirus Closely Related to SARS-CoV-2 Contains Natural Insertions at the S1/S2 Cleavage Site of the Spike Protein. Current Biology. 2020, 30 (11): 2196–2203.e3. ISSN 0960-9822. doi:10.1016/j.cub.2020.05.023. 
  5. ^ 5.0 5.1 5.2 5.3 Hu, Dan; Zhu, Changqiang; Ai, Lele; He, Ting; Wang, Yi; Ye, Fuqiang; Yang, Lu; Ding, Chenxi; Zhu, Xuhui; Lv, Ruicheng; Zhu, Jin; Hassan, Bachar; Feng, Youjun; Tan, Weilong; Wang, Changjun. Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerging Microbes & Infections. 2018, 7 (1): 1–10. ISSN 2222-1751. doi:10.1038/s41426-018-0155-5. 
  6. ^ Lu, Roujian; Zhao, Xiang; Li, Juan; Niu, Peihua; Yang, Bo; Wu, Honglong; Wang, Wenling; Song, Hao; Huang, Baoying; Zhu, Na; Bi, Yuhai; Ma, Xuejun; Zhan, Faxian; Wang, Liang; Hu, Tao; Zhou, Hong; Hu, Zhenhong; Zhou, Weimin; Zhao, Li; Chen, Jing; Meng, Yao; Wang, Ji; Lin, Yang; Yuan, Jianying; Xie, Zhihao; Ma, Jinmin; Liu, William J; Wang, Dayan; Xu, Wenbo; Holmes, Edward C; Gao, George F; Wu, Guizhen; Chen, Weijun; Shi, Weifeng; Tan, Wenjie. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020, 395 (10224): 565–574. ISSN 0140-6736. doi:10.1016/S0140-6736(20)30251-8. 
  7. ^ Yan, Li-Meng; Kang, Shu; Guan, Jie; Hu, Shanchang. Unusual Features of the SARS-CoV-2 Genome Suggesting Sophisticated Laboratory Modification Rather Than Natural Evolution and Delineation of Its Probable Synthetic Route. Rule of Law Society & Rule of Law Foundation. [2021-01-20]. (原始内容存档于2020-09-15). 
  8. ^ Keoni Everington. Virologist releases paper claiming coronavirus made in Chinese lab. Taiwan News. 2020-09-15 [2021-01-20]. (原始内容存档于2021-01-15). 
  9. ^ Katherine J. Wu. Another ‘Unfounded’ Study on Origins of Virus Spreads Online. The New York Times. 2020-10-13 [2021-01-20]. (原始内容存档于2020-11-02). 
  10. ^ Brouillette, Monique; Renner, Rebecca. Why misinformation about COVID-19's origins keeps going viral: Another piece of coronavirus misinformation is making the rounds. Here's how to sift through the muck.. National Geographic. 2020-09-18 [2021-01-20]. (原始内容存档于2020-09-24). 
  11. ^ Kuznia, Rob; Bronstein, Scott; Griffin, Drew; Devine, Curt. How a Covid-19 origin theory backed by Bannon unraveled - CNNPolitics. CNN. 2020-10-21 [2020-10-22]. (原始内容存档于2022-05-03). 
  12. ^ 12.0 12.1 Wacharapluesadee S, Tan CW, Maneeorn P, Duengkae P, Zhu F, Joyjinda Y, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nature Communications. February 2021, 12 (1): 972. PMC 7873279可免费查阅. PMID 33563978. doi:10.1038/s41467-021-21240-1可免费查阅. 
  13. ^ 13.0 13.1 13.2 Hul V, Delaune D, Karlsson EA, Hassanin A, Tey PO, Baidaliuk A, et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. bioRxiv: 2021.01.26.428212. 26 January 2021. doi:10.1101/2021.01.26.428212 (英语). 
  14. ^ Murakami, Shin; Kitamura, Tomoya; Suzuki, Jin; Sato, Ryouta; Aoi, Toshiki; Fujii, Marina; Matsugo, Hiromichi; Kamiki, Haruhiko; Ishida, Hiroho; Takenaka-Uema, Akiko; Shimojima, Masayuki; Horimoto, Taisuke. Detection and Characterization of Bat Sarbecovirus Phylogenetically Related to SARS-CoV-2, Japan. Emerging Infectious Diseases. 2020, 26 (12): 3025–3029. ISSN 1080-6040. doi:10.3201/eid2612.203386. 
  15. ^ Lam, Tommy Tsan-Yuk; et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020, 583 (7815): 282–285. ISSN 0028-0836. doi:10.1038/s41586-020-2169-0. 
  16. ^ Xiao, Kangpeng; Zhai, Junqiong; Feng, Yaoyu; Zhou, Niu; Zhang, Xu; Zou, Jie-Jian; Li, Na; Guo, Yaqiong; Li, Xiaobing; Shen, Xuejuan; Zhang, Zhipeng; Shu, Fanfan; Huang, Wanyi; Li, Yu; Zhang, Ziding; Chen, Rui-Ai; Wu, Ya-Jiang; Peng, Shi-Ming; Huang, Mian; Xie, Wei-Jun; Cai, Qin-Hui; Hou, Fang-Hui; Chen, Wu; Xiao, Lihua; Shen, Yongyi. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature. 2020-07-09, 583 (7815): 286–289. doi:10.1038/s41586-020-2313-x. 
  17. ^ Zhou, Peng; Yang, Xing-Lou; Wang, Xian-Guang; Hu, Ben; Zhang, Lei; Zhang, Wei; Si, Hao-Rui; Zhu, Yan; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, 579 (7798): 270–273. ISSN 0028-0836. doi:10.1038/s41586-020-2012-7. 
  18. ^ Temmam, Sarah; Vongphayloth, Khamsing; Baquero, Eduard; Munier, Sandie; Bonomi, Massimiliano; Regnault, Béatrice; Douangboubpha, Bounsavane; Karami, Yasaman; Chrétien, Delphine; Sanamxay, Daosavanh; Xayaphet, Vilakhan; Paphaphanh, Phetphoumin; Lacoste, Vincent; Somlor, Somphavanh; Lakeomany, Khaithong; Phommavanh, Nothasin; Pérot, Philippe; Dehan, Océane; Amara, Faustine; Donati, Flora; Bigot, Thomas; Nilges, Michael; Rey, Félix A.; van der Werf, Sylvie; Brey, Paul T.; Eloit, Marc. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 16 February 2022. doi:10.1038/s41586-022-04532-4.