跳转到内容

伽玛射线暴

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自余辉 (伽玛射线暴)
大质量恒星生命历程艺术示意图。恒星内部的轻元素核聚变成为重元素,当这一过程无法再抵抗重力时,恒星会骤然坍缩,形成黑洞,并沿着旋转轴喷发大量能量,是为伽马射线暴。

伽马射线暴(英语:Gamma-ray burst,缩写GRB),又称伽马暴,是来自遥远星系、能量极高的爆炸的光芒。伽马射线暴是宇宙中自大爆炸以来能量和光度都最高的电磁脉冲事件。[1]爆发可持续十毫秒至数小时。[2][3][4]最初的伽马射线闪光过后,还会留下时间更长、波长更长的“余辉”(X光紫外光可见光红外光微波乃至无线电波)。[5]

当一颗大质量恒星到达生命晚期时,会内爆形成中子星黑洞,这一爆炸过程称为超新星超高光度超新星英语superluminous supernova。科学家相信,绝大部分伽马射线暴都来自于此类爆炸事件。有一部分时间较短的伽马射线暴很有可能源自于两颗中子星碰撞的事件。[6]

伽马射线暴的来源星系都在数十亿光年之遥,意味着此类爆炸事件的能量极高(爆炸在几秒钟内所释放的能量就足以超过太阳在其百亿年生命中所释放的能量总和),[7]也极为罕见(每个星系在一百万年内只会出现几次)。[8]人类在历史上所观测到的伽马射线暴都源于银河系以外,不过有一种类似的称为软伽马射线重复爆发源的爆发现象,则是来自于银河系内的磁星。科学家推测,假如在银河系内发生伽马射线暴,而且爆发的辐射对向地球,这将造成生物集群灭绝[9]

1967年,原本设计用于探测秘密核武器试验帆船号卫星英语Vela (satellite)首次探测到伽马射线暴。科学家在仔细分析之后,终于在1973年发表此发现。[10]这随即引发了天文学界的轰动,学者们纷纷提出各种理论模型,试图解释这种爆发现象,如彗星互相碰撞或中子星互相碰撞等等。[11]在其后的二十多年间,由于观测数据的匮乏,林林总总的模型,无一脱颖而出。直到1997年,天文学家在探测到伽马射线暴的同时,也观测到了紧随的X光和可见光余辉。利用光谱学分析可见光余辉的红移,就可推算爆发来源的距离和总能量。再结合对星系和超新星的研究后,科学家终于能准确测量伽马射线暴的确切距离和光度,并且断定此类事件的确源于遥远的星系。

历史

[编辑]
BATSE实验所探测到的所有伽马射线暴来源方向。爆发源的分布具有各向同性,并不集中于银河系平面(图的中间横线)。

1963年,包括美国和苏联在内的多国签署《部分禁止核试验条约》,但美国怀疑苏联仍然在秘密进行核试验。因此,美国发射了一系列名为帆船号卫星英语Vela (satellite)的太空伽马射线探测器,目的是监测在太空进行的核试验所发出的伽马射线。[12]世界协调时1967年7月2日14时19分,帆船3号和4号卫星探测到了一次伽马射线闪光,但它却和所有已知的核爆特征截然不同。[13]洛斯阿拉莫斯国家实验室雷·克勒贝萨德尔英语Ray Klebesadel为首的负责团队对此并没有合理的解释,但也并不认为这是一次紧急事件,因此把数据暂时放在一边,有待进一步调查。接下来美国又接连发射了更多的帆船号卫星,器材也有所改进,但克勒贝萨德尔的团队仍然探测到一次又一次的神秘伽马射线暴。团队在多个卫星的数据中比较探测到闪光的确切时间,以此推算出16次爆发的大约来源方向,[13]并完全排除了爆发来自于地球或太阳的可能性。探测数据并没有被列为机密。[14]在详细分析之后,1973年,克勒贝萨德尔等科学家在《天文物理期刊》上发表了〈来自宇宙的伽马射线暴之观测〉一文。[10]

早期针对伽马射线暴的猜想大多都把来源定在银河系以内。从1991年起,康普顿伽马射线天文台(CGRO)所承载的爆发与暂现源探测仪(BATSE)记录了上千次伽马射线暴,发现这些爆发事件来自于宇宙各个方向,而并不集中于任何一个方向,亦即爆发源的分布具有各向同性[15]假如爆发源来自于银河系内,那么其分布会集中于银河系平面附近。科学家以此推断,伽马射线暴一定来自于银河系以外。[16][17][18][19]然而,有些主张爆发来自于银河系内的模型仍然可以解释各向同性的分布。[16][20]

2018年10月,天文学家宣布,2017年发生的伽马射线暴GRB 150101B英语GRB 150101B引力波事件GW170817很可能都是两颗中子星碰撞所产生的。这两件事件在伽马射线可见光X光特征,乃至其所在星系的特性都有十分相似之处。因此,中子星碰撞事件所引发的千新星可能比科学界最初所预计的更为常见。[21][22][23][24]

2019年爆发的GRB 190114C英语GRB 190114C释放出的伽马射线能量高达1 TeV一万亿电子伏特),是人类探测到能量最高的伽马射线暴。[25]2021年,科学家探测到来自银河系能量为1.4 PeV的伽马辐射,比最高能伽马射线暴再高出一千倍左右,但它并不属于伽马射线暴。[26]

可能的爆发源天体

[编辑]

在伽马射线暴发现后的几十年间,天文学家曾试图通过伽马射线以外的电磁波观测爆发来源天体,也就是在最近期发生过爆发的方向寻找对应的天体。考虑在内的有各种天体:白矮星脉冲星超新星球状星团类星体赛弗特星系蝎虎座BL型天体等。[27]然而,天文学家并没有得出明确的结论,[nb 1]而且有若干爆发事件的方向可以准确测量,但那个方向并没有任何其他明亮的天体。这意味着,伽马射线暴的来源要不是十分暗淡的恒星,就一定是极其遥远的星系。[28][29]科学家相信,要更精准地测量伽马射线暴的方向,需建造更先进的卫星和传讯科技。[30]

余辉

[编辑]
意大利和荷兰合建的BeppoSAX卫星在1996年4月升空,它能够准确测量伽马射线暴的来源方向,有助天文学家作后续观测并判断来源天体。

有多个解释伽马射线暴原理的模型都预测,在最初伽马射线闪光过后,爆炸产生的喷发物与星际物质高速碰撞,会产生波长较长、逐渐减弱的“余辉”。[31]最初探测并不成功,因为在爆发被发现后,很难即刻用其他波长观测爆发的准确方向。1997年2月,BeppoSAX卫星探测到GRB 970228事件[nb 2]。它紧接着将X光相机对向爆发来源的方向,成功探测到了X光余辉。威廉·赫歇耳望远镜也在原爆发的20小时之后,探测到了逐渐变暗的可见光余辉。[32]伽马射线暴完全消熄之后,天文学家对可见光余辉的准确来源方向进行深空拍摄,发现一个暗淡而遥远的星系。[33][34]

由于该星系的光度太暗,因此天文学家在接下来的几年间都未能测量出其距离。同年,BeppoSAX卫星又测得新的事件GRB 970508。天文学家在仅仅4小时以内就算出它的方向,因而可以更早地开始进行针对性观测。从爆发源吸收光谱所得出的红移值为z = 0.835,相等于距离地球60亿光年[35]科学家首次得出伽马射线暴的准确距离,并找到了爆发来源——一个极遥远的星系。[33][36]这一发现在天文学界引发了争论,但争论在接下来的几个月内逐渐温和了下来。翌年,GRB 980425发生后不到一天又发生了超新星SN 1998bw,而且两者的来源位置相同。科学家从而发现,伽马射线暴是和大质量恒星的爆炸息息相关的。[37]

美国国家航空航天局尼尔·格雷尔斯雨燕天文台,2004年11月升空

虽然康普顿伽马射线天文台和BeppoSAX卫星分别在2000年和2002年退役,但天文学界此时对伽马射线暴这一新兴领域兴致勃勃,研发出一系列专门针对伽马射线暴的探测仪器,特别用于观测紧随着爆发所发生的后续事件。高能暂现源探测仪英语High Energy Transient Explorer(HETE-2)在2000年升空,2006年退役,这段时间内大部分伽马射线暴都是由它发现的。[38]2004年升空的尼尔·格雷尔斯雨燕天文台(Swift)截至2022年仍在服役,是最成功的太空观测实验之一。[39][40]Swift搭载了一部敏感度极高的伽马射线探测器以及X光和可见光望远镜,这些仪器均可以自动快速转向,充分捕捉爆发后的余辉。2008年升空的费米伽马射线空间天文台(简称费米)在一年内能够探测到数百次爆发,其中光度和能量极高的爆发可以用它搭载的大面积望远镜观测。科学家还对不少地面上的可见光望远镜做了升级,为它们安装了能够快速响应伽马射线暴坐标网络英语Gamma-ray Burst Coordinates Network讯息的机械控制软件。在收到伽马射线暴发生的讯息之后,这些望远镜可以在几秒钟以内转向爆发源的方向,甚至在伽马射线仍未熄灭之前就开始进行观测。[41][42]

自从2000年代以来,天文学家对伽马射线暴有了更深入的了解。第一是意识到短伽马射线爆发现象很可能和超新星无关,而是中子星碰撞合并所致。第二是发现大部分伽马射线暴之后会有X光不稳定闪烁的现象,持续几分钟。第三是发现宇宙中最亮的天体(GRB 080319B)和当时已知最遥远的天体(GRB 090423)。[43][44]

分类

[编辑]
伽马射线暴的光变曲线

伽马射线暴的光变曲线种类繁多,[45]而且每一次爆发的光变曲线都是独一无二的。[46]爆发时长短至数毫秒,长至数十分钟。曲线可以有一个高峰,也可以由多个小脉冲所组成。有的脉冲形状对称,有的则上坡快,下坡慢。有的爆发事件之前会出现伽马射线暴前体英语Gamma-ray burst progenitors,也就是先发生一次弱爆发,接着几秒钟至几分钟内毫无动静,然后在发生真正的强烈伽马射线暴。[47]有些光变曲线曲折复杂,似乎毫无规律可言。[30]

尽管科学家能够利用某些简化的模型推导出大约类似的光变曲线,[48]但在曲线为何如此复杂多变的问题上却没有太大的进展。科学家提出了不少分类法,但这些分类规则往往只看光变曲线的表面化特征,而不看爆发来源天体的确切性质。不过,伽马射线暴的爆发时长[nb 3]分布呈双峰特征,意味着存在两大类爆发:一类为平均0.3秒长的短爆发,另一类为平均30秒长的长爆发。[49]分布的两个峰很宽,中间有一大片重叠的区域,在这片区域内的爆发很难判断属于长或短类。更进一步的分类法还会考虑爆发时长以外的观测或理论因素。[50][51][52][53]

短伽马射线暴

[编辑]
哈勃空间望远镜拍摄的千新星爆发余辉。[54]
ALMA拍摄的GRB 211106A,这是科学家首次拍到短伽马射线暴的毫米波长余辉。[55][56][57]

短伽马射线暴指的是持续时间不到2秒的伽马射线暴。此类爆发占所有爆发的三成左右。2005年以前,科学家从未观测到来自短爆发的余辉,因此对此类爆发的来源所知甚少。[58]自此,科学家已观测到数十次短爆发的余辉,并判断出其确切方向。他们发现,有的短爆发来自于恒星形成较少或不形成恒星的区域,例如大型椭圆星系和大型星系团的中心区域,[59][60][61][62]意味着短爆发和大质量恒星无关。另外,短爆发与超新星也没有关联,因此短爆发和长爆发是两种背后原理不同的现象。[63]

科学家最初推测,短爆发是两颗中子星相互碰撞[64]或一颗中子星与一个黑洞相撞的结果。此类碰撞所产生的爆发星体称为千新星[65]天文学家在GRB 130603B爆发期间也观测到了一颗有所关联千新星。[66][67][68]由于狭义相对论讯息不可超越光速传递的原理,短爆发之短又意味着爆发源天体的体型必定是小的。爆发时长为0.2秒,即爆发源的直径不超过0.2光秒(约6万公里,地球直径之四倍)。中子星在2秒以内落入黑洞并发出伽马射线之后,其环绕黑洞公转的剩余物质(将不再是中子物质)将在数分钟至数小时内逐渐堕入黑洞,并发出X光。这能够解释天文学家所观测到的X光余辉。[58]

一部分短伽马射线暴可能来自邻近星系中的软伽马射线重复爆发源的大型耀斑。[69][70]

2017年,科学家探测到引力波事件GW170817,并且在仅仅1.7秒之后又探测到短伽马射线暴GRB 170817A。在详细分析后,科学家确定此次事件来自两颗中子星碰撞所产生的千新星。[6][64]

长伽马射线暴

[编辑]

伽马射线暴中有七成属于长伽马射线暴,即爆发时长超过2秒者。此类爆发持续时间之长、余辉之强,有助于详细观测,所以相比短爆发来说,科学家对长爆发了解得更加深入。几乎每一个经过详细分析的长伽马射线暴都源自于正在快速生成恒星的星系,甚至有的能追溯至核坍缩超新星。因此,可以断定长爆发的来源是死亡过程中的大质量恒星。[71]科学家在分析高红移长伽马射线暴的余辉之后,也发现此类爆发源自于恒星形成的区域。[72]

超长伽马射线暴

[编辑]

超长伽马射线暴指的是位于时长分布最尾端的长伽马射线暴,其持续时间超过若干个小时。有科学家主张,此类爆发应另归一类,是由蓝超巨星的坍缩[73]、黑洞撕裂临近恒星引发的潮汐瓦解事件[74][75]或新形成的磁星所致。[74][76]至今科学家只观测到少数几个这样的爆发事件,其中被深入研究的有GRB 101225A英语GRB 101225AGRB 111209A等。[75][77][78]人们没有观测到更多的超长伽马射线暴,可能是因为目前的探测仪器对长时间爆发事件灵敏度较低,而不是因为此类事件在宇宙中罕见。[75]也有科学家认为,这些超长伽马射线暴因有其独特爆发源而要另开一类的理据并不充足,须在多个波长段进行更多的观测才能下结论。[79]

能量和射束

[编辑]
恒星生成区发生伽马射线暴的艺术示意图。爆炸产生的能量形成两条狭窄的射束,向相反方向射出。

虽然伽马射线暴源都极其遥远,但它从地球上观测却光度很高。一般长伽马射线暴的全波段绝对星等和银河系内一颗较亮的恒星相当,尽管前者有数十亿光年之遥,而后者(大部分肉眼可见恒星)只有几十光年左右的距离。大部分能量以伽马射线的形式释放,某些伽马射线暴也会伴随着光度很高的可见光爆发。例如,GRB 080319B离地球75亿光年,但伴随它的可见光爆发视星等为5.8,[80]相当于肉眼可见的最暗的恒星。这意味着,产生伽马射线暴的都是能量极高的现象。假设伽马射线暴源以球对称的形式爆发,那么GRB 080319B所释放的能量就约等于太阳的质量,即通过质能等价关系把整个太阳的质量都转化为辐射。[43]

伽马射线暴是高度聚焦的爆炸事件,大部分爆炸能量都集中于准直光束英语collimated light中,形成狭窄的喷流[81][82]喷流的角宽可以从余辉光变曲线的全波段“喷流骤停”时间直接估算出来,即当喷流无法再支持相对论性光束英语relativistic beaming以致原本缓慢变暗的余辉骤然变暗的时间。[83][84]观测指出,不同爆发的喷流角宽有较大的差异,从2度至20度不等。[85]

由于爆发的能量是高度聚焦的,因此绝大部分爆发事件的光束都不朝向地球,也探测不到。当爆发光束正好朝向地球时,探测到的光度会比球对称的爆炸高得多。考虑到这一聚焦效应,一般伽马射线暴所释放的能量大约为1044 J,约等价于太阳质量的二千分之一,[85]但仍比地球的质量(5.5 × 1041 J)高许多倍。这和Ib和Ic超新星所释放的能量相近,亦符合理论模型。科学家曾观测到几个距离较近的伽马射线暴和高光度超新星同时爆发的现象。[37]从近距离Ic超新星光谱中的高度不对称性[86],以及通过在爆发一段时间以后喷流早已减速时做射电观测[87],可得到伽马射线暴高度聚焦的进一步证据。

相比长伽马射线暴来说,短伽马射线暴离地球较近,光度较低。[88]此类爆发的聚焦程度还没有被准确测量过,不过有科学家认为,短爆发的准直性比长爆发低,[89]甚至是完全发散的。[90]

前身天体

[编辑]
沃尔夫–拉叶星WR 124及其周围的星云,由哈勃空间望远镜摄。沃尔夫–拉叶星很可能是长伽马射线暴的前身天体。

大部分伽马射线暴源离地球遥远,因此很难判断是哪一种天体发生爆发的。某些长伽马射线暴和超新星相关,其来源星系也是活跃的恒星生成区,这都意味着长伽马射线暴与大质量恒星密切相关。最广为接受的坍缩星模型主张,当质量极大、金属量低、高速自转的恒星在演化生命晚期,星核坍缩成为黑洞时,会发生长伽马射线暴。[91]星核附近的物质往中心下降,形成漩涡状的高密度吸积盘,并沿旋转轴喷出两束相反的相对论性喷射,喷流冲破恒星外层,辐射出伽马射线。也有其他模型主张恒星坍缩形成的是磁星而不是黑洞,其余生成过程基本不变。[92][93]

在银河系里,沃尔夫–拉叶星和此类恒星最为相似。沃尔夫–拉叶星温度极高、质量极高,其氢外层几乎已散失殆尽。从这一角度来看,海山二阿佩普WR 104都有在未来发生伽马射线暴的可能性。[94]不过,科学家不能确定银河系恒星是否具备发生伽马射线暴的所有必要特征。[95]

大质量恒星并不能解释所有的伽马射线暴事件。有证据显示,某些短伽马射线暴是在非恒星生成区或不含大质量恒星的区域发生,例如椭圆星系和银晕[88]科学家认为,短伽马射线暴最为可能是双中子星系统合并的结果。两颗相互公转的中子星因释放引力波而丧失能量并逐渐靠近,[96][97]直至被潮汐力突然撕裂,两者碰撞后形成一颗黑洞。物质向刚形成的黑洞堕落并形成吸积盘,同时释放出巨大的能量,这一阶段和坍缩星模型相似。其他还有林林总总解释短伽马射线暴的模型,包括:中子星和黑洞合并,吸积盘引发中子星坍缩,原初黑洞蒸发,引力坍缩过程中的物质在黑洞事件视界外彻底瓦解成伽马射线,等等。[98][99][100][101][102]

潮汐瓦解事件

[编辑]

2011年3月28日,尼尔·格雷尔斯雨燕天文台探测到GRB 110328A,发现了新一类伽马射线暴。此次事件的伽马射线放射时长为2天,比长伽马射线暴都要长得多,而且它在X光波段的放射持续了许多个月。爆发来源于红移z = 0.35(即距离约45亿光年)的一个小型椭圆星系。爆发究竟是星体坍缩还是带相对论性喷射的潮汐瓦解所致,在学界仍有争议。

此类伽马射线暴的原理是,恒星运行至特大质量黑洞附近,被黑洞撕裂,在某些情况下会产生有强烈伽马射线辐射的相对论性喷射。科学家最早提出,GRB 110328A(亦称雨燕J1644+57)是一颗主序星和质量为太阳的数百万倍的黑洞互动的结果;[103][104][105]后来又有科学家认为,这更可能是一颗白矮星被质量为太阳数万倍的黑洞瓦解的结果。[106]

发射原理

[编辑]
伽马射线暴的原理示意图

伽马射线暴是如何把巨大的能量转换为电磁辐射,直至2010年还没有科学共识。[107]要成功解释伽马射线暴,提出的模型必须用物理过程解释,天文观测到的各种光变曲线、光谱及其他特征是如何产生的。[108]尤其难以解释的是,某些爆发事件似乎有着非常高的能量转换效率,爆炸能量转换为伽马射线的比率可高达一半以上。[109]对伴随着GRB 990123GRB 080319B的可见光爆发的观测表明,[80][110]某些爆发的物理过程可能以逆康普顿散射为主。这一模型主张,原先存在的低能光子被爆炸中的相对论性电子散射,突然获得巨大的能量,成为伽马射线。[111]

相对来说,科学家对伽马射线暴后的长波长余辉(从X光至射电波)有更好的了解。没有即时转化为辐射的爆炸能量,就会以高速物质的形式存在,以接近光速的速度向外喷出,并与周边的星际物质碰撞,所产生的相对论性冲击波继续向星际空间进发。反弹回来的二次冲击波有可能再次进入向外进发的物质。冲击波内能量极高的电子在磁场的作用下加速,发出横跨大部分电磁波谱同步辐射[112][113]这一模型能够成功解释余辉在长时间后(爆炸后几个小时至几天)的特征,但它未能解释伽马射线暴后短时间内的许多余辉特征。[114]

发生频率及对生命的影响

[编辑]
格林威治标准时间2015年10月27日22时40分,雨燕天文台累计发现了1000次伽马射线暴。[115]

伽马射线暴对生命有害,甚至有摧毁性的破坏力。地球位于银河系的外围,而在整个宇宙当中,适合生命繁衍的环境也正正是大星系外围密度较低的区域。从各类型星系的分布可以推算出,只有约10%的星系可以繁衍生命。而且,z大于0.5的高红移星系会高频率发生伽马射线暴,恒星也过于密集,因此不宜生命。[116][117]

至今科学家观测到的伽马射线暴都源自银河系以外极其遥远的地方,对地球没有任何威胁。不过,假如在银河系内离地球5千至8千光年处发生一次伽马射线暴,[118]而且它所产生的高能喷流正指向地球,那么它就会对地球上的生态造成破坏,甚至有毁灭性的作用。目前所有卫星在宇宙中所观测到的伽马射线暴总和频率为每天一次。截止2014年3月,最接近地球的伽马射线暴为GRB 980425,距离为4千万秒差距(即1亿3千万光年,红移z = 0.0085),[119],源于一个SBc型矮星系。[120]GRB 980425所释放的能量远远低于平均,它和Ib型超新星SN 1998bw相关。[121]

估算伽马射线暴的确切发生频率并不容易。在一个银河系大小的星系里,长伽马射线暴的发生频率估计为一万年一次到一百万年一次,[122]其中只有很小一部分的爆发会指向地球。因为科学家还不了解此类爆发的聚焦程度,所以短伽马射线暴的发生频率就更是一个未知数,但应该和长伽马射线暴相近。[123]

由于伽马射线暴只会沿方向相反的两束喷流发出能量,因此只有在喷流方向的天体才会受到高能伽马射线的放射。[124]

虽然在地球附近发生直指地球的摧毁性伽马射线暴目前只是一个理论可能,但可以肯定的是,银河系内其它高能量现象已经对地球的大气有所影响。[125]

对地球的影响

[编辑]

地球的大气层可以有效吸收X光和伽马射线等高能电磁辐射,所以在爆发过程中在地表所接受的辐射量不会达到危险的程度。假如在数千秒差距距离内发生伽马射线暴的话,它仅仅会使地表的紫外线水平短暂上升,持续时间最短不到一秒,最长也只有几十秒。根据爆发的特征和距离,紫外线有机会达到危险水平,但仍然不太可能对地球生命直接构成灾难性的威胁。[126][127]

相反,伽马射线暴在长时间段里的影响会危险得多。伽马射线会对大气中的氧气氮气分子产生化学反应,先生成一氧化氮,再而生成二氧化氮,此二者有以下三个层面的危害性。第一,它们会破坏臭氧层,使全球臭氧量减少25至35%,有些地区甚至会减少75%,状况将持续许多年,使得地表紫外线指数长期处于危险程度。第二,它们在与阳光反应后会形成光化学烟雾,阻挡部分太阳光,进而影响植物的光合作用。然而科学模型显示,这一效应只会对太阳全光谱造成1%左右的下降,持续几年。烟雾则有可能使全球降温,造成和撞击冬天原理相似的“宇宙冬天”,但只有在凑巧同时出现全球气候不稳定的前提下才会发生。第三,大气层里的二氧化氮会和雨水结合形成酸雨,即含有硝酸的雨水。虽然硝酸对各种生物都是有害物质,但是有模型预测,硝酸浓度不足以造成严重的全球性危害。再进一步产生的硝酸盐反而可能对某些植物有益。[126][127]

总结来说,在几千秒差距内发生的伽马射线暴,就算其能量束正对地球,也最多只会在爆发期间以及之后几年提高地表的紫外线水平。从模型可预计,DNA所受到的破坏将是一般情况下的16倍。然而,目前的生物学还不具备预测这一效应对地球生态的确切影响的能力。[126][127]

在地球历史上可能有过的影响

[编辑]

有科学家推测,在过去50亿年曾发生过严重破坏地球生命的近距离伽马射线暴的概率非常高,而在过去5亿年曾发生过爆发并造成其中一次生物集群灭绝事件的概率为50%。[128]

4亿5千万年前发生的奥陶纪-志留纪灭绝事件有可能就是伽马射线暴所致。在奥陶纪晚期的各个三叶虫种群当中,生活在充满浮游生物的海洋表面的种群最受打击,反而生活在深水、活动空间较狭窄的种群得以生存。这种灭绝特征有别于其他的集群灭绝事件,因为分布广阔的物种通常会比分布局限的生物更容易存活。因此有科学家认为,深水三叶虫受到了水屏障的保护,免受伽马射线暴所带来的紫外线摧残。同样支持这一观点的证据还有:奥陶纪晚期的双壳纲物种当中,挖洞的比在表面生活的更容易度过此次灭绝事件。[9]

除此之外,有科学家论证,774年至775年间碳14飙升现象是一次短伽马射线暴所致。[129][130]不过,这也有可能是一次非常强大的太阳耀斑所致。[131]

银河系内可能爆发的天体

[编辑]
由恒星坍缩引发的短伽马射线暴臆想图。[132]

科学家从未观测到来自地球所处的银河系以内的伽马射线暴。[133]银河系内在过去是否发生过爆发,也是一个未解之谜。随着科学界对伽马射线暴及其前身天体的了解不断提升,人们也逐一记下可能在过去发生过或在将来会发生爆发的各个系内天体。如今观测到的长伽马射线暴都和超高光度超新星(又称极超新星)相关,而大部分高光度蓝变星和高速自转的沃尔夫–拉叶星都被认为会以星核坍缩超新星的形式死亡,并伴随长伽马射线暴。需要谨慎的是,科学家目前对伽马射线暴的了解全部来自宇宙历史长河中较早期的星系,而此类星系的金属量很低,很难把其中恒星的演化过程直接套用于银河系这类金属量较高的后期星系。[134][135][136]

参见

[编辑]

备注

[编辑]
  1. ^ 例外的是1979年3月5日爆发的GRB 790305b英语GRB 790305b。此次光度极高的闪光过后,天文学家成功地追寻到它的来源——大麦哲伦星系内的超新星遗骸N49。今天科学家认为此次事件是一次磁星大型耀发英语Gamma-ray burst progenitors,其实更像软伽马射线重复爆发源,而不是“真正”的伽马射线暴。
  2. ^ 伽马射线暴的命名方式如下:GRB是伽马射线暴的缩写,其后是各两位数的年、月、日,再接着是以字母代表当天发现的伽马射线暴顺序,A为当天首个,B为当天第二个,如此类推。2010年之前发生的伽马射线暴只有在当天探测到多于一次爆发事件时,才会附上字母顺序。
  3. ^ 爆发时长一般以T90定义,即爆发源释放能量总值的90%所需的时间。天文学家发现,有些原以为是短爆发的伽马射线暴,其发生后还会出现一次更长的爆发。如果把后者纳入到光变曲线之内,所得的T90值就会延长至几分钟。

引用

[编辑]
  1. ^ Gamma Rays. NASA. (原始内容存档于2012-05-02). 
  2. ^ Atkinson, Nancy. New Kind of Gamma Ray Burst is Ultra Long-Lasting. Universe Today. 2013-04-16 [2022-01-03]. (原始内容存档于2023-02-05) (美国英语). 
  3. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?. The Astrophysical Journal. 2013, 766 (1): 30. Bibcode:2013ApJ...766...30G. S2CID 118618287. arXiv:1212.2392可免费查阅. doi:10.1088/0004-637X/766/1/30. 
  4. ^ Graham, J. F.; Fruchter, A. S. The Metal Aversion of LGRBs. The Astrophysical Journal. 2013, 774 (2): 119. Bibcode:2013ApJ...774..119G. S2CID 125987555. arXiv:1211.7068可免费查阅. doi:10.1088/0004-637X/774/2/119. 
  5. ^ Vedrenne & Atteia 2009
  6. ^ 6.0 6.1 Abbott, B. P. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters. 16 October 2017, 119 (16): 161101. Bibcode:2017PhRvL.119p1101A. PMID 29099225. S2CID 217163611. arXiv:1710.05832可免费查阅. doi:10.1103/PhysRevLett.119.161101. 
  7. ^ Arizona State University. Massive star's dying blast caught by rapid-response telescopes. PhysOrg. 26 July 2017 [27 July 2017]. (原始内容存档于2023-05-31). 
  8. ^ Podsiadlowski 2004
  9. ^ 9.0 9.1 Melott 2004
  10. ^ 10.0 10.1 Klebesadel R.W.; Strong I.B.; Olson R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. The Astrophysical Journal. 1973, 182: L85. Bibcode:1973ApJ...182L..85K. doi:10.1086/181225. 
  11. ^ Hurley 2003
  12. ^ Bonnell, JT; Klebesadel, RW. A brief history of the discovery of cosmic gamma-ray bursts. AIP Conference Proceedings. 1996, 384 (1): 977–980. Bibcode:1996AIPC..384..977B. doi:10.1063/1.51630. 
  13. ^ 13.0 13.1 Schilling 2002, pp. 12–16
  14. ^ Bonnell, J. T.; Klebesadel, R. W. A brief history of the discovery of cosmic gamma-ray bursts. AIP Conference Proceedings. 1996, 384: 979. Bibcode:1996AIPC..384..977B. doi:10.1063/1.51630. 
  15. ^ Meegan 1992
  16. ^ 16.0 16.1 Vedrenne & Atteia 2009, pp. 16–40
  17. ^ Schilling 2002, pp. 36–37
  18. ^ Paczyński 1999, p. 6
  19. ^ Piran 1992
  20. ^ Lamb 1995
  21. ^ University of Maryland. All in the family: Kin of gravitational wave source discovered – New observations suggest that kilonovae – immense cosmic explosions that produce silver, gold and platinum – may be more common than thought. EurekAlert! (新闻稿). 16 October 2018 [17 October 2018]. (原始内容存档于2018-10-16). 
  22. ^ Troja, E.; et al. A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341. Nature Communications. 16 October 2018, 9 (4089 (2018)): 4089. Bibcode:2018NatCo...9.4089T. PMC 6191439可免费查阅. PMID 30327476. arXiv:1806.10624可免费查阅. doi:10.1038/s41467-018-06558-7. 
  23. ^ Mohon, Lee. GRB 150101B: A Distant Cousin to GW170817. NASA. 16 October 2018 [17 October 2018]. (原始内容存档于2019-03-22). 
  24. ^ Wall, Mike. Powerful Cosmic Flash Is Likely Another Neutron-Star Merger. Space.com. 17 October 2018 [17 October 2018]. (原始内容存档于2018-10-17). 
  25. ^ Veres, P; et al. Observation of inverse Compton emission from a long γ-ray burst. Nature. 20 November 2019, 575 (7783): 459–463. Bibcode:2019Natur.575..459M. PMID 31748725. S2CID 208191199. arXiv:2006.07251可免费查阅. doi:10.1038/s41586-019-1754-6. 
  26. ^ Conover, Emily. Record-breaking light has more than a quadrillion electron volts of energy. Science News. 2021-05-21 [2022-05-11]. (原始内容存档于2023-04-17) (美国英语). 
  27. ^ Hurley 1986, p. 33
  28. ^ Pedersen 1987
  29. ^ Hurley 1992
  30. ^ 30.0 30.1 Fishman & Meegan 1995
  31. ^ Paczynski 1993
  32. ^ van Paradijs 1997
  33. ^ 33.0 33.1 Vedrenne & Atteia 2009, pp. 90–93
  34. ^ Schilling 2002, p. 102
  35. ^ Reichart 1995
  36. ^ Schilling 2002, pp. 118–123
  37. ^ 37.0 37.1 Galama 1998
  38. ^ Ricker 2003
  39. ^ McCray 2008
  40. ^ Gehrels 2004
  41. ^ Akerlof 2003
  42. ^ Akerlof 1999
  43. ^ 43.0 43.1 Bloom 2009
  44. ^ Reddy 2009
  45. ^ Katz 2002, p. 37
  46. ^ Marani 1997
  47. ^ Lazatti 2005
  48. ^ Simić 2005
  49. ^ Kouveliotou 1994
  50. ^ Horvath 1998
  51. ^ Hakkila 2003
  52. ^ Chattopadhyay 2007
  53. ^ Virgili 2009
  54. ^ Hubble captures infrared glow of a kilonova blast. Image Gallery. ESA/Hubble. 5 August 2013 [14 August 2013]. 
  55. ^ Laskar, Tanmoy; Escorial, Alicia Rouco; Schroeder, Genevieve; Fong, Wen-fai; Berger, Edo; Veres, Péter; Bhandari, Shivani; Rastinejad, Jillian; Kilpatrick, Charles D.; Tohuvavohu, Aaron; Margutti, Raffaella; Alexander, Kate D.; DeLaunay, James; Kennea, Jamie A.; Nugent, Anya. The First Short GRB Millimeter Afterglow: The Wide-angled Jet of the Extremely Energetic SGRB 211106A. The Astrophysical Journal Letters. 2022-08-01, 935 (1): L11. Bibcode:2022ApJ...935L..11L. S2CID 248572470. arXiv:2205.03419可免费查阅. doi:10.3847/2041-8213/ac8421. 
  56. ^ Out With a Bang: Explosive Neutron Star Merger Captured for the First Time in Millimeter Light. National Radio Astronomy Observatory. [2022-08-14] (美国英语). 
  57. ^ Explosive neutron star merger captured for first time in millimeter light. news.northwestern.edu. [2022-08-14] (英语). 
  58. ^ 58.0 58.1 In a Flash NASA Helps Solve 35-year-old Cosmic Mystery页面存档备份,存于互联网档案馆). NASA (2005-10-05) The 30% figure is given here, as well as afterglow discussion.
  59. ^ Bloom 2006
  60. ^ Hjorth 2005
  61. ^ Berger 2007
  62. ^ Gehrels 2005
  63. ^ Zhang 2009
  64. ^ 64.0 64.1 Nakar 2007
  65. ^ Metzger, B. D.; Martínez-Pinedo, G.; Darbha, S.; Quataert, E.; et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society. August 2010, 406 (4): 2650. Bibcode:2010MNRAS.406.2650M. S2CID 118863104. arXiv:1001.5029可免费查阅. doi:10.1111/j.1365-2966.2010.16864.x. 
  66. ^ Tanvir, N. R.; Levan, A. J.; Fruchter, A. S.; Hjorth, J.; Hounsell, R. A.; Wiersema, K.; Tunnicliffe, R. L. A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B. Nature. 2013, 500 (7464): 547–549. Bibcode:2013Natur.500..547T. PMID 23912055. S2CID 205235329. arXiv:1306.4971可免费查阅. doi:10.1038/nature12505. 
  67. ^ Berger, E.; Fong, W.; Chornock, R. An r-Process Kilonova Associated with the Short-Hard GRB 130603B. The Astrophysical Journal. 2013, 774 (2): L23. Bibcode:2013ApJ...774L..23B. S2CID 669927. arXiv:1306.3960可免费查阅. doi:10.1088/2041-8205/774/2/L23. 
  68. ^ Gugliucci, Nicole. Kilonova Alert! Hubble Solves Gamma Ray Burst Mystery. Discovery News. 7 August 2013 [22 January 2015]. (原始内容存档于3 March 2016). 
  69. ^ Frederiks 2008
  70. ^ Hurley 2005
  71. ^ Woosley & Bloom 2006
  72. ^ Pontzen et al. 2010
  73. ^ Gendre, B.; Stratta, G.; Atteia, J. L.; Basa, S.; Boër, M.; Coward, D. M.; Cutini, S.; d'Elia, V.; Howell, E. J; Klotz, A.; Piro, L. The Ultra-Long Gamma-Ray Burst 111209A: The Collapse of a Blue Supergiant?. The Astrophysical Journal. 2013, 766 (1): 30. Bibcode:2013ApJ...766...30G. S2CID 118618287. arXiv:1212.2392可免费查阅. doi:10.1088/0004-637X/766/1/30. 
  74. ^ 74.0 74.1 Greiner, Jochen; Mazzali, Paolo A.; Kann, D. Alexander; Krühler, Thomas; Pian, Elena; Prentice, Simon; Olivares E., Felipe; Rossi, Andrea; Klose, Sylvio; Taubenberger, Stefan; Knust, Fabian; Afonso, Paulo M. J.; Ashall, Chris; Bolmer, Jan; Delvaux, Corentin; Diehl, Roland; Elliott, Jonathan; Filgas, Robert; Fynbo, Johan P. U.; Graham, John F.; Guelbenzu, Ana Nicuesa; Kobayashi, Shiho; Leloudas, Giorgos; Savaglio, Sandra; Schady, Patricia; Schmidl, Sebastian; Schweyer, Tassilo; Sudilovsky, Vladimir; Tanga, Mohit; et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature. 2015-07-08, 523 (7559): 189–192. Bibcode:2015Natur.523..189G. PMID 26156372. S2CID 4464998. arXiv:1509.03279可免费查阅. doi:10.1038/nature14579. 
  75. ^ 75.0 75.1 75.2 Levan, A. J.; Tanvir, N. R.; Starling, R. L. C.; Wiersema, K.; Page, K. L.; Perley, D. A.; Schulze, S.; Wynn, G. A.; Chornock, R.; Hjorth, J.; Cenko, S. B.; Fruchter, A. S.; O'Brien, P. T.; Brown, G. C.; Tunnicliffe, R. L.; Malesani, D.; Jakobsson, P.; Watson, D.; Berger, E.; Bersier, D.; Cobb, B. E.; Covino, S.; Cucchiara, A.; de Ugarte Postigo, A.; Fox, D. B.; Gal-Yam, A.; Goldoni, P.; Gorosabel, J.; Kaper, L.; et al. A new population of ultra-long duration gamma-ray bursts. The Astrophysical Journal. 2014, 781 (1): 13. Bibcode:2014ApJ...781...13L. S2CID 24657235. arXiv:1302.2352可免费查阅. doi:10.1088/0004-637x/781/1/13. 
  76. ^ Ioka, Kunihito; Hotokezaka, Kenta; Piran, Tsvi. Are Ultra-Long Gamma-Ray Bursts Caused by Blue Supergiant Collapsars, Newborn Magnetars, or White Dwarf Tidal Disruption Events?. The Astrophysical Journal. 2016-12-12, 833 (1): 110. Bibcode:2016ApJ...833..110I. S2CID 118629696. arXiv:1608.02938可免费查阅. doi:10.3847/1538-4357/833/1/110. 
  77. ^ Boer, Michel; Gendre, Bruce; Stratta, Giulia. Are Ultra-long Gamma-Ray Bursts different?. The Astrophysical Journal. 2013, 800 (1): 16. Bibcode:2015ApJ...800...16B. S2CID 118655406. arXiv:1310.4944可免费查阅. doi:10.1088/0004-637X/800/1/16. 
  78. ^ Virgili, F. J.; Mundell, C. G.; Pal'Shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R.; Henden, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Steele, I. A.; Cucchiara, A.; Gomboc, A.; Levan, A.; Cano, Z.; Mottram, C. J.; Clay, N. R.; Bersier, D.; Kopač, D.; Japelj, J.; Filippenko, A. V.; Li, W.; Svinkin, D.; Golenetskii, S.; Hartmann, D. H.; Milne, P. A.; et al. Grb 091024A and the Nature of Ultra-Long Gamma-Ray Bursts. The Astrophysical Journal. 2013, 778 (1): 54. Bibcode:2013ApJ...778...54V. S2CID 119023750. arXiv:1310.0313可免费查阅. doi:10.1088/0004-637X/778/1/54. 
  79. ^ Zhang, Bin-Bin; Zhang, Bing; Murase, Kohta; Connaughton, Valerie; Briggs, Michael S. How Long does a Burst Burst?. The Astrophysical Journal. 2014, 787 (1): 66. Bibcode:2014ApJ...787...66Z. S2CID 56273013. arXiv:1310.2540可免费查阅. doi:10.1088/0004-637X/787/1/66. 
  80. ^ 80.0 80.1 Racusin 2008
  81. ^ Rykoff 2009
  82. ^ Abdo 2009
  83. ^ Sari 1999
  84. ^ Burrows 2006
  85. ^ 85.0 85.1 Frail 2001
  86. ^ Mazzali 2005
  87. ^ Frail 2000
  88. ^ 88.0 88.1 Prochaska 2006
  89. ^ Watson 2006
  90. ^ Grupe 2006
  91. ^ MacFadyen 1999
  92. ^ Zhang, Bing; Mészáros, Peter. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. The Astrophysical Journal Letters. 2001-05-01, 552 (1): L35–L38. Bibcode:2001ApJ...552L..35Z. S2CID 18660804. arXiv:astro-ph/0011133可免费查阅. doi:10.1086/320255. 
  93. ^ Troja, E.; Cusumano, G.; O'Brien, P. T.; Zhang, B.; Sbarufatti, B.; Mangano, V.; Willingale, R.; Chincarini, G.; Osborne, J. P. Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine. The Astrophysical Journal. 2007-08-01, 665 (1): 599–607. Bibcode:2007ApJ...665..599T. S2CID 14317593. arXiv:astro-ph/0702220可免费查阅. doi:10.1086/519450. 
  94. ^ Plait 2008
  95. ^ Stanek 2006
  96. ^ Abbott 2007
  97. ^ Kochanek 1993
  98. ^ Vietri 1998
  99. ^ MacFadyen 2006
  100. ^ Blinnikov 1984
  101. ^ Cline 1996
  102. ^ Winterberg, Friedwardt (2001 Aug 29). "Gamma-Ray Bursters and Lorentzian Relativity". Z. Naturforsch 56a: 889–892.
  103. ^ Science Daily 2011
  104. ^ Levan 2011
  105. ^ Bloom 2011
  106. ^ Krolick & Piran 11
  107. ^ Stern 2007
  108. ^ Fishman, G. 1995
  109. ^ Fan & Piran 2006
  110. ^ Liang, E. P.; Crider, A.; Boettcher, M.; Smith, I. A. GRB990123: The Case for Saturated Comptonization. The Astrophysical Journal. 1999-03-29, 519 (1): L21–L24. Bibcode:1999ApJ...519L..21L. S2CID 16005521. arXiv:astro-ph/9903438可免费查阅. doi:10.1086/312100. 
  111. ^ Wozniak 2009
  112. ^ Meszaros 1997
  113. ^ Sari 1998
  114. ^ Nousek 2006
  115. ^ ESO Telescopes Observe Swift Satellite's 1000th Gamma-ray Burst. 6 November 2015 [9 November 2015]. 
  116. ^ Piran, Tsvi; Jimenez, Raul. Possible Role of Gamma Ray Bursts on Life Extinction in the Universe. Physical Review Letters. 5 December 2014, 113 (23): 231102. Bibcode:2014PhRvL.113w1102P. PMID 25526110. S2CID 43491624. arXiv:1409.2506可免费查阅. doi:10.1103/PhysRevLett.113.231102. 
  117. ^ Schirber, Michael. Focus: Gamma-Ray Bursts Determine Potential Locations for Life. Physics. 2014-12-08, 7: 124. doi:10.1103/Physics.7.124. 
  118. ^ Cain, Fraser. Are Gamma Ray Bursts Dangerous?. January 12, 2015 [2023-09-10]. (原始内容存档于2023-05-16). 
  119. ^ Soderberg, A. M.; Kulkarni, S. R.; Berger, E.; Fox, D. W.; Sako, M.; Frail, D. A.; Gal-Yam, A.; Moon, D. S.; Cenko, S. B.; Yost, S. A.; Phillips, M. M.; Persson, S. E.; Freedman, W. L.; Wyatt, P.; Jayawardhana, R.; Paulson, D. The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature. 2004, 430 (7000): 648–650. Bibcode:2004Natur.430..648S. PMID 15295592. S2CID 4363027. arXiv:astro-ph/0408096可免费查阅. doi:10.1038/nature02757. hdl:2027.42/62961. 
  120. ^ Le Floc'h, E.; Charmandaris, V.; Gordon, K.; Forrest, W. J.; Brandl, B.; Schaerer, D.; Dessauges-Zavadsky, M.; Armus, L. The first Infrared study of the close environment of a long Gamma-Ray Burst. The Astrophysical Journal. 2011, 746 (1): 7. Bibcode:2012ApJ...746....7L. S2CID 51474244. arXiv:1111.1234可免费查阅. doi:10.1088/0004-637X/746/1/7. 
  121. ^ Kippen, R.M.; Briggs, M. S.; Kommers, J. M.; Kouveliotou, C.; Hurley, K.; Robinson, C. R.; Van Paradijs, J.; Hartmann, D. H.; Galama, T. J.; Vreeswijk, P. M. On the Association of Gamma-Ray Bursts with Supernovae. The Astrophysical Journal. October 1998, 506 (1): L27–L30. Bibcode:1998ApJ...506L..27K. S2CID 2677824. arXiv:astro-ph/9806364可免费查阅. doi:10.1086/311634. 
  122. ^ Morelle, Rebecca. Gamma-ray burst 'hit Earth in 8th Century'. BBC News. 2013-01-21 [January 21, 2013]. (原始内容存档于2023-09-08). 
  123. ^ Guetta and Piran 2006
  124. ^ Welsh, Jennifer. Can gamma-ray bursts destroy life on Earth?. MSN. 2011-07-10 [October 27, 2011]. (原始内容存档于2020-08-08). 
  125. ^ Cosmic energy burst disturbs Earth's atmosphere. NASA Science. September 29, 1998 [2023-09-10]. (原始内容存档于2023-01-24). 
  126. ^ 126.0 126.1 126.2 Thomas, B.C. Gamma-ray bursts as a threat to life on Earth. International Journal of Astrobiology. 2009, 8 (3): 183–186. Bibcode:2009IJAsB...8..183T. S2CID 118579150. arXiv:0903.4710可免费查阅. doi:10.1017/S1473550409004509. 
  127. ^ 127.0 127.1 127.2 Martin, Osmel; Cardenas, Rolando; Guimarais, Mayrene; Peñate, Liuba; Horvath, Jorge; Galante, Douglas. Effects of gamma ray bursts in Earth's biosphere. Astrophysics and Space Science. 2010, 326 (1): 61–67. Bibcode:2010Ap&SS.326...61M. S2CID 15141366. arXiv:0911.2196可免费查阅. doi:10.1007/s10509-009-0211-7. 
  128. ^ Piran, Tsvi; Jimenez, Raul. Possible Role of Gamma Ray Bursts on Life Extinction in the Universe. Physical Review Letters. 2014-12-05, 113 (23): 231102. doi:10.1103/PhysRevLett.113.231102. 
  129. ^ Pavlov, A.K.; Blinov, A.V.; Konstantinov, A.N.; et al. AD 775 pulse of cosmogenic radionuclides production as imprint of a Galactic gamma-ray burst. Mon. Not. R. Astron. Soc. 2013, 435 (4): 2878–2884. Bibcode:2013MNRAS.435.2878P. S2CID 118638711. arXiv:1308.1272可免费查阅. doi:10.1093/mnras/stt1468. 
  130. ^ Hambaryan, V.V.; Neuhauser, R. A Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5. Monthly Notices of the Royal Astronomical Society. 2013, 430 (1): 32–36. Bibcode:2013MNRAS.430...32H. S2CID 765056. arXiv:1211.2584可免费查阅. doi:10.1093/mnras/sts378. 
  131. ^ Mekhaldi; et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of ᴀᴅ 774/5 and 993/4. Nature Communications. 2015, 6: 8611. Bibcode:2015NatCo...6.8611M. PMC 4639793可免费查阅. PMID 26497389. doi:10.1038/ncomms9611. 
  132. ^ Illustration of a Short Gamma-Ray Burst Caused by a Collapsing Star. July 26, 2021 [August 3, 2021]. 
  133. ^ Lauren Fuge. Milky Way star set to go supernova. Cosmos. 20 November 2018 [7 April 2019]. (原始内容存档于2023-04-17). 
  134. ^ Vink JS. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars. Philos Trans Royal Soc A. 2013, 371 (1992): 20120237. Bibcode:2013RSPTA.37120237V. PMID 23630373. doi:10.1098/rsta.2012.0237可免费查阅. 
  135. ^ Y-H. Chu; C-H. Chen; S-P. Lai. Superluminous supernova remnants. Mario Livio; Nino Panagia; Kailash Sahu (编). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. Cambridge University Press. 2001: 135. ISBN 978-0-521-79141-0. 
  136. ^ Van Den Heuvel, E. P. J.; Yoon, S.-C. Long gamma-ray burst progenitors: Boundary conditions and binary models. Astrophysics and Space Science. 2007, 311 (1–3): 177–183. Bibcode:2007Ap&SS.311..177V. S2CID 38670919. arXiv:0704.0659可免费查阅. doi:10.1007/s10509-007-9583-8. 

参考资料

[编辑]

延伸阅读

[编辑]

外部链接

[编辑]
伽马射线暴探测任务
伽马射线暴事后追踪任务