跳转到内容

单射

本页使用了标题或全文手工转换
维基百科,自由的百科全书

数学里,单射函数(或称内射函数、嵌射函数[1]、一对一函数,英文称injection、injective function 或 one-to-one function)为一函数,其将不同的输入值对应到不同的函数值上。更精确地说,函数f被称为是单射的,当对每一陪域内的y,存在最多一个定义域内的x使得f(x) = y

由从X 映射至Y 的单射函数所组成的集合标记为YX,该符号的由来为下降阶乘幂。当XY 分别为具有m 个及n 个元素的有限集合时,从X 映射至Y 的单射函数数量可以以下降阶乘幂表示为nm

定义

[编辑]

f 为一函数,且其定义域为一集合X,当且仅当对所有于X 内的元素ab,当f(a) = f(b)时,a = b,则该函数为单射函数;等价地说,当ab时,f(a) ≠ f(b)

以逻辑符号表示如下:

换质换位律,该叙述逻辑等价于

例子与反例

[编辑]
  • 对任一集合XX上的恒等函数为单射的。
  • 函数f : R → R,其定义为f(x) = 2x + 1,是单射的。
  • 函数g : R → R,其定义为g(x) = x2,不是单射的,因为g(1) = 1 = g(−1)。但若将g的定义域限在非负实数[0,+∞)内,则g是单射的。
  • 指数函数是单射的。
  • 自然对数函数是单射的。
  • 函数,不是单射的,因为 g(0) = g(1)。

形象化地说,当定义域和到达域都是实数集 R时,单射函数f : R → R为一绝不会与任一水平线相交超过一点的图。

单射函数为可逆函数

[编辑]

具有左反函数的函数,必为单射。此处的条件(具有左反函数),比具有反函数弱:给定一函数f : XY,若存在一函数g : YX,使得对X内的每个元素x

g(f(x)) = x

则称gf左反函数,而上式也就推出f为单射函数。

相反地,每个具非空定义域的单射函数f 都会有个左反函数g[2]。须注意的是,g 不一定会是f反函数,因为相反顺序的函数复合fg 不一定也会是Y 上的恒等函数

事实上,要将一单射函数f : X → Y变成双射函数,只需要将其陪域Y替换成其值域J = f(X)就行了。亦即,令g : X → J,使其对所有X内的xg(x) = f(x);如此g便为满射的了。确实,f可以分解成inclJ,Yog,其中inclJ,Y是由JY内含映射

其他性质

[编辑]
  • fg皆为单射的,则f o g亦为单射的。
单射复合
  • g o f为单射的,则f为单射的(但g不必然要是)。
  • f : X → Y是单射的当且仅当当给定两函数g, h : W → X会使得f o g = f o h时,则g = h
  • f : X → Y为单射的且AX子集,则f −1(f(A)) = A
  • f : X → Y是单射的且AB皆为X的子集,则f(A ∩ B) = f(A) ∩ f(B)。
  • 任一函数 h : W → Y 皆可分解为 h = f o g 其中 f 是单射而 g 是满射。此分解至多差一个自然同构, f 可以设想为从 h(W) 到 Y内含映射
  • f : X → Y 是单射,则在基数的意义下 Y 的元素数量不少于 X
  • XY 皆为有限集,则 f : X → Y 是单射当且仅当它是满射。
  • 内含映射总是单射。

范畴论的观点

[编辑]

范畴论的语言来说,单射函数恰好是集合范畴内的单态射

另见

[编辑]

参考资料

[编辑]
  1. ^ injection - 嵌射;单射页面存档备份,存于互联网档案馆),国家教育研究院双语词汇、学术名词暨辞书信息网
  2. ^ Injection iff Left Inverse [单射当且仅当有左逆]. proofwiki.org. [2021-09-01]. (原始内容存档于2022-03-10) (英语). 

参考文献

[编辑]

外部链接

[编辑]