模块:Complex Number/Calculate/Operators
外观
此模块被引用于约12,000个页面。 为了避免造成大规模的影响,所有对此模块的编辑应先于沙盒或测试样例上测试。 测试后无误的版本可以一次性地加入此模块中,但是修改前请务必于讨论页发起讨论。 模板引用数量会自动更新。 |
语法 | 名称 | 元数 | 说明 | 优先 | 示例 | 效果 | math输出 |
---|---|---|---|---|---|---|---|
基础算术 | |||||||
+ |
2 | 计算两数之和 |
9 | 7 + 3 |
10 |
||
- |
2 | 计算两数之差 |
9 | 7 - 3 |
4 |
||
* |
2 | 计算两数之乘积 |
10 | 7 * 3 |
21 |
||
× |
2 | 计算两数之乘积 |
10 | 7 × 3 |
21 |
||
/ |
2 | 计算两数相除之商 |
10 | 7 / 3 |
2.3333333333333 |
||
÷ |
2 | 计算两数相除之商 |
10 | 7 ÷ 3 |
2.3333333333333 |
||
% |
2 | 计算两数相除之余数 |
10 | 7 % 3 |
1 |
||
^ |
2 | 计算两数之幂运算 |
12 | 7 ^ 3 |
343 |
||
e |
2 | 当e左邻一实数、右邻一整数时,则为科学记号,以 256e-3 为例,其代表的结果为。要注意的是左边的数必为单一实数、右边的数必为整数,可为负数,且中间不能有空格。 |
∞ | 12.3e4 |
123000 |
||
() |
1 | 改变运算优先级 |
∞ | 2*(2+3) |
10 |
||
数论 | |||||||
+ |
1 | 表达一正数 |
14 | +7 |
7 |
||
- |
1 | 计算一数的相反数 |
14 | -7 |
-7 |
||
% |
2 | 计算两数相除之余数 |
10 | 7 % 3 |
1 |
||
布尔代数 | |||||||
& |
2 | 两逻辑是否皆为真 |
5 | (1=1) & (1=2) |
0 |
||
↑ |
2 | 两逻辑是否不全为真 |
5 | (1=1) ↑ (1=2) |
1 |
||
| |
2 | 两逻辑是否有一者为真 |
4 | (1=1) | (1=2) |
1 |
||
↓ |
2 | 两逻辑是否全为假 |
4 | (1=1) ↓ (1=2) |
0 |
||
⊕ |
2 | 两逻辑是否相异 |
4 | (1=1) ⊕ (1=2) |
1 |
||
⇔ |
2 | 两逻辑是否相同 |
4 | (1=1) ⇔ (1=2) |
0 |
||
~ |
1 | 逻辑否定 |
13 | ~(1=2) |
1 |
||
and |
2 | 逻辑且的字母模式。使用时须与前后文各间隔至少一个空格 |
5 | (1=1) and (1=2) |
0 |
||
nand |
2 | 逻辑与非的字母模式。使用时须与前后文各间隔至少一个空格 |
5 | (1=1) nand (1=2) |
1 |
||
or |
2 | 逻辑或的字母模式。使用时须与前后文各间隔至少一个空格 |
4 | (1=1) or (1=2) |
1 |
||
nor |
2 | 逻辑或非的字母模式。使用时须与前后文各间隔至少一个空格 |
4 | (1=1) nor (1=2) |
0 |
||
xor |
2 | 逻辑异或的字母模式。使用时须与前后文各间隔至少一个空格 |
4 | (1=1) xor (1=2) |
1 |
||
xnor |
2 | 逻辑当且仅当的字母模式。使用时须与前后文各间隔至少一个空格 |
4 | (1=1) xnor (1=2) |
0 |
||
not |
1 | 逻辑非的字母模式。使用时须与前后文各间隔至少一个空格 |
13 | not (1=2) |
1 |
||
数值修约 | |||||||
round |
2 | round 的运算子模式,会将一数四舍五入到指定的位数。使用时须与前后文各间隔至少一个空格 |
8 | π round 6 |
3.141593 |
||
代数 | |||||||
⋅ |
2 | 表达一数的系数 |
10 | 2⋅π |
6.2831853071796 |
||
← |
2 | 给予变数数值 |
7 | x ← 7;x |
7 |
||
↦ |
2 | 给予函数定义 |
12 | :x,y↦x^2+y^2;(5,2) |
29 |
||
: |
构成函数
|
2 | 冒号( : )为定义函数时区隔函数的名称与函数的主体,而冒号(: )与分号(; )的区间构成一个函数的定义。在冒号左边的内容为函数的名称,在冒号右边的内容为函数的内容。若函数没有名称也需要输写冒号。 |
7 | f:x↦x^2;(5) |
25 |
|
, |
2 | 产生数组供多元函数使用 |
1 | 7, 3 |
7, 3 |
||
复变 | |||||||
* |
1 | 计算一数的共轭复数 |
14 | *(7+3i) |
7-3i |
||
i |
1 | 表达纯虚数 |
∞ | 3i |
3i |
||
二元关系 | |||||||
> |
2 | 比较两数大小 |
6 | 7 > 3 |
1 |
||
< |
2 | 比较两数大小 |
6 | 7 < 3 |
0 |
||
≥ |
2 | 比较两数大小 |
6 | 7 ≥ 3 |
1 |
||
≤ |
2 | 比较两数大小 |
6 | 7 ≤ 3 |
0 |
||
= |
2 | 两数是否相等 |
3 | 7 = 3 |
0 |
||
≠ |
2 | 两数是否不相等 |
3 | 7 ≠ 3 |
1 |
||
技术性 | |||||||
; |
2 | 分隔两运算式,结果将取最后一个分号后的结果 |
1 | 7 ; 3 |
3 |
||
return |
1 | 返回数值。需注意return后方必须跟着一个数值或表达式,否则会变成未定义行为而出现预期外的结果。 |
2 | return 7;8 |
7 |
||
三角函数 | |||||||
° |
1 | 用于表示角度单位的符号。 |
10 | 180° |
3.1415926535898 |
||
π |
1 | 表示圆周率。 |
10 | 3π |
9.4247779607694 |
local p={}
local noop_func = function()end
local function numberToAZ(num)
local body = ''
local s = tostring(math.floor(tonumber(num)))
for i = 1, mw.ustring.len(s) do
local char_id = tonumber(mw.ustring.sub(s, i, i)) + 65
char_id = char_id + ((char_id >= 73) and 3 or 0)
body = body .. mw.ustring.char(char_id)
end
return body
end
function p.fill_function(in_ftable, final_scope)
for k,v in pairs(in_ftable) do
if type(v) ~= type(noop_func) then final_scope['*$'..k]=in_ftable[k]final_scope[k]=function(...)return final_scope['*$'..k]:func(...)end end
end
return final_scope
end
function p.fill_scope(final_scope, math_lib, number_Constructer, debug_flag, calc_func)
for k,v in pairs(final_scope) do if mw.ustring.sub(k,1,2)=="*$" then final_scope[k].local_scopes = final_scope end end
final_scope['^$math_lib']=math_lib
final_scope['^$number_Constructer']=number_Constructer
final_scope['^$debug_flag']=debug_flag
final_scope['^$calc_func']=calc_func
return final_scope
end
function p.function_preload(input_str_o,in_ftable, math_lib, number_Constructer, debug_flag, nocalc_func, just_fix)
local input_str = mw.ustring.gsub(input_str_o,'⇽','←')
if mw.ustring.find(input_str,"↦") then else return input_str end
local func = noop_func
local old_str = input_str
local outer_old_str = input_str
if just_fix == true or type(math_lib.toTagMath)==type(func) then
repeat
outer_old_str = input_str
repeat
old_str = input_str
local repl_named = type(math_lib.toTagMath)==type(func)and(function(name,vars,contxs,tail)
local func_contx = mw.ustring.format("%s⇐((%s)⇰(%s))", name,mw.ustring.gsub(vars,',',mw.ustring.char(0x201A)),mw.ustring.gsub(contxs,';+','∷'):gsub(',+','█'))
if mw.text.trim(tail or '')=='(' then
func_contx = '(' .. func_contx .. ')⇽' .. tail
elseif mw.text.trim(tail or '')~='' then
func_contx = func_contx .. '∷'
end
return func_contx
end) or "%1⇐((%2)⇰(%3))∷"
input_str = mw.ustring.gsub(input_str,"(%a+)%s*:([%a%s,]+)↦([^↦:]-);(%s*[%(,]?)", repl_named)
until input_str == old_str
local repl_unnamed =type(math_lib.toTagMath)==type(func)and(function(vars,contxs)
return mw.ustring.format("((%s)⇰(%s))⇽",mw.ustring.gsub(vars,',',mw.ustring.char(0x201A)),
mw.ustring.gsub(contxs,';','∷'):gsub(',','█')
)
end) or "((%1)⇰(%2))⇽"
input_str = mw.ustring.gsub(input_str,":([%a%s,]+)↦([^↦:]-);",repl_unnamed)
until input_str == outer_old_str
input_str = mw.ustring.gsub(input_str,"⇰","↦")
input_str = mw.ustring.gsub(input_str,"∷",";")
input_str = mw.ustring.gsub(input_str,"█",",")
input_str = mw.ustring.gsub(input_str,"⇐",":")
input_str = mw.ustring.gsub(input_str,mw.ustring.char(0x201A),',')
input_str = mw.text.trim(input_str,"\t\r\n\f ⇽")
input_str = mw.ustring.gsub(input_str,"⇽(%s*[,;%)])","%1")
return input_str
end
local ftable = type(in_ftable) ~= type({"table"}) and {} or in_ftable
local function make_fobj(par,inner)
local n_par = mw.text.trim(mw.ustring.gsub(par,'[%s,;:]+', ','),"\t\r\n\f ,")
local make_obj = {par=mw.text.split(n_par,','),inner=inner}
make_obj.postfix = nocalc_func(inner, math_lib, number_Constructer, debug_flag)
function make_obj:func(...)
local make_args = {...}
local back_up_scope = {}
for i=1,#self.par do if make_args[i] then
back_up_scope[self.par[i]] = self.local_scopes[self.par[i]]
self.local_scopes[self.par[i]] = make_args[i]
end end
if self.local_scopes['^$debug_flag'] == true then mw.log("call "..self.functionName) end
local result = self.local_scopes['^$calc_func'](
self.postfix,
self.local_scopes,
self.local_scopes['^$math_lib'],
self.local_scopes['^$number_Constructer'],
self.local_scopes['^$debug_flag']
)
for i=1,#self.par do if make_args[i] then
self.local_scopes[self.par[i]] = back_up_scope[self.par[i]]
end end
if mw.ustring.find(tostring(result),',') then
result = tostring(result)
local tail_data = mw.text.split(result,',')
for i=#tail_data,1,-1 do result = mw.text.trim(tail_data[i])if result ~= '' then break end end
end
if self.local_scopes['^$debug_flag'] == true then mw.log(self.functionName.." return "..tostring(result)) end
return result
end
return make_obj
end
local function func_repl(par,inner)
ftable[#ftable + 1] = make_fobj(par,inner)
ftable[#ftable].functionName = '#'..#ftable
local func_index = numberToAZ(#ftable)
ftable['function'..func_index] = ftable[#ftable]
return ' function'..func_index..' '
end
local function func_repl_n(name,par,inner)
ftable[name] = make_fobj(par,inner)
ftable[name].functionName = name
return ' '..name..' '
end
repeat
outer_old_str = input_str
repeat
old_str = input_str
input_str = mw.ustring.gsub(input_str,"(%a+)%s*:([%a%s,]+)↦([^↦:]-);",func_repl_n)
until input_str == old_str
input_str = mw.ustring.gsub(input_str,":([%a%s,]+)↦([^↦:]-);",func_repl)
until input_str == outer_old_str
return input_str, ftable
end
p.symbol_table = {
['+'] = { propetry="op", multp = true, count = 2,
name="加法",title="加法",example="7 + 3",description="計算兩數之和",
priority=9, ppriority=9, calc=function(a,b,c,d)return d(a)+d(b) end},
["+ "] = { propetry="op", count = 1,
name="正號",title="正數",example="+7",description="表達一正數",
priority=14, ppriority=14, calc=function(a,c,d)return d(a) end},
['-'] = { propetry="op", multp = true, count = 2,
name="減法",title="減法",example="7 - 3",description="計算兩數之差",
priority=9, ppriority=9, calc=function(a,b,c,d)return d(a)-d(b) end},
["- "] = { propetry="op", count = 1,
name="負號",title="负数",example="-7",description="計算一數的相反數",
priority=14, ppriority=14, calc=function(a,c,d)return -d(a) end},
['−'] = { propetry="op", multp = true, count = 2,
name="減法",title="減法",example="7 − 3",description="計算兩數之差",
priority=9, ppriority=9, calc=function(a,b,c,d)return d(a)-d(b) end},
["− "] = { propetry="op", count = 1,
name="負號",title="负数",example="−7",description="計算一數的相反數",
priority=14, ppriority=14, calc=function(a,c,d)return -d(a) end},
['*'] = { propetry="op", multp = true, count = 2,
name="乘法",title="乘法",example="7 * 3",description="計算兩數之乘積",
priority=10, ppriority=10, calc=function(a,b,c,d)return d(a)*d(b) end},
["* "] = { propetry="op", count = 1,
name="共軛複數",title="共轭复数",example="*(7+3i)",description="計算一數的共軛複數",
priority=14, ppriority=14, calc=function(a,c,d) if type(c.conjugate)==type(noop_func) then return c.conjugate(d(a))else return d(a)end end},
['×'] = { propetry="op", multp = true, count = 2,
name="乘法",title="乘法",example="7 × 3",description="計算兩數之乘積",
priority=10, ppriority=10, calc=function(a,b,c,d)return d(a)*d(b) end},
--隱藏符號的乘法
['⋅'] = { propetry="op", count = 2,
name="係數",title="系数",example="2⋅π",description="表達一數的係數",
priority=10, ppriority=10, calc=function(a,b,c,d)if type(c.mathtimes)==type(noop_func) then return c.mathtimes(d(a),d(b)) end return d(a)*d(b)end},
--處理單位的內部符號
['˙'] = { propetry="op", private=true, multp = true, count = 2, priority=10, ppriority=10, calc=function(a,b,c,d)if type(c.mathtimes)==type(noop_func) then return c.mathtimes(d(a),d(b)) end return d(a)*d(b)end},["˙ "] = { propetry="op", private=true, count = 1, priority=14, ppriority=14, calc=function(a,c,d) return d(a) end},
--優先序處理的內部符號
['MINOP'] = { propetry="op", private=true, multp = true, count = 2, priority=-999, ppriority=-999 },
['MAXOP'] = { propetry="op", private=true, multp = true, count = 2, priority=999, ppriority=999 },
['/'] = { propetry="op", count = 2,
name="除法",title="除法",example="7 / 3",description="計算兩數相除之商",
priority=10, ppriority=10, calc=function(a,b,c,d)return d(a)/d(b) end},
['÷'] = { propetry="op", count = 2,
name="除法",title="除法",example="7 ÷ 3",description="計算兩數相除之商",
priority=10, ppriority=10, calc=function(a,b,c,d)return d(a)/d(b) end},
['%'] = { propetry="op", count = 2,
name="取餘數",title="带余除法",example="7 % 3",description="計算兩數相除之餘數",
priority=10, ppriority=10, calc=function(a,b,c,d)return d(a)%d(b) end},
['≃'] = { propetry="op", count = 2,
name="数值修约",title="数值修约",example="7.3 ≃ 1",description="計算將一數数值修约至指定位數",
priority=8, ppriority=8, calc=function(a,b,c,d)return c.round(d(a),d(b)) end},
['^'] = { propetry="op", count = 2,
name="冪",title="冪",example="7 ^ 3",description="計算兩數之冪運算",
priority=12, ppriority=11, calc=function(a,b,c,d)return c.pow(d(a),d(b)) end},
[','] = { propetry="op", count = 2,
name="數組",title="数组",example="7, 3",description="產生數組供多元函數使用",
priority=1, ppriority=1, calc=function(c,...) if type(c.mathcomma)==type(noop_func) then return c.mathcomma(...) end error("此處不支援此種運算")end },
['='] = { propetry="op", count = 2,
name="邏輯相等",title="相等",example="7 = 3",description="兩數是否相等",
priority=3, ppriority=3, calc=function(a,b,c,d)return type(c.matheq)==type(noop_func)and c.matheq(d(a),d(b))or d( (c.abs(d(a)-d(b)) < 1e-14) and 1 or 0)end},
['≠'] = { propetry="op", count = 2,
name="邏輯不相等",title="不等",example="7 ≠ 3",description="兩數是否不相等",
priority=3, ppriority=3, calc=function(a,b,c,d)return type(c.mathneq)==type(noop_func)and c.mathneq(d(a),d(b))or d( (c.abs(d(a)-d(b)) > 1e-14)and 1 or 0)end},
['←'] = { propetry="op", count = 2,
name="數值指派",title="變數",example="x ← 7;x",description="給予變數數值",
priority=7, ppriority=7, calc=function(a,b,c,d)return type(c.mathdef)==type(noop_func)and c.mathdef(d(a),d(b))or b end},
['⟵'] = { propetry="op", count = 1,
name="返回值",title="Return語句",example="⟵7;8",description="返回數值",
priority=2, ppriority=2, calc=function(a,c,d)return type(c.mathreturn)==type(noop_func)and c.mathreturn(d(a))or a end},
--處理函數的內部符號
['⇽'] = { propetry="op", private=true, count = 2, priority=12, ppriority=12, calc=function(a,b,c,d)return type(c.mathset)==type(noop_func)and c.mathset(d(a),d(b))or b end},
['↦'] = { propetry="op", count = 2,
name="函數映射",title="函數",example=":x,y↦x^2+y^2;(5,2)",description="給予函數定義",
priority=12, ppriority=12, calc=function(a,b,c,d)if type(c.mathmapsto)==type(noop_func) then return c.mathmapsto(d(a),d(b)) end error("此處不支援此種運算子")end},
[':'] = { propetry="op", count = 2,
name="構成函數",example="f:x↦x^2;(5)",description="冒號(<code>:</code>)為定義函<span></span>數時區隔函<span></span>數的名稱與函<span></span>數的主體,而冒號(<code>:</code>)與分號(<code>;</code>)的區間構成一個函<span></span>數的定義。在冒號左邊的內容為函<span></span>數的名稱,在冒號右邊的內容為函<span></span>數的內容。若函<span></span>數沒有名稱也需要輸寫冒號。",
priority=7, ppriority=7, calc=function(a,b,c,d)if type(c.mathfuncdef)==type(noop_func) then return c.mathfuncdef(d(a),d(b)) end error("函數語法錯誤")end},
[';'] = { propetry="op", count = 2,
name="運算式分隔",title="分號",example="7 ; 3",description="分隔兩運算式,結果將取最後一個分號後的結果",
priority=1, ppriority=1, calc=function(a,b,c,d)return type(c.mathsemicolon)==type(noop_func)and c.mathsemicolon(d(a),d(b))or b end},
['>'] = { propetry="op", count = 2,
name="邏輯大於",title="不等號",example="7 > 3",description="比較兩數大小",
priority=6, ppriority=6, calc=function(a,b,c,d)
if type(c.mathgt)==type(noop_func) then return c.mathgt(d(a),d(b)) end
if c.abs(c.nonRealPart(d(a))) > 1e-14 or c.abs(c.nonRealPart(d(b))) > 1e-14 then return 0 end
return d(c.re(d(a))>c.re(d(b))and 1 or 0)
end},
['<'] = { propetry="op", count = 2,
name="邏輯小於",title="不等號",example="7 < 3",description="比較兩數大小",
priority=6, ppriority=6, calc=function(a,b,c,d)
if type(c.mathlt)==type(noop_func) then return c.mathlt(d(a),d(b)) end
if c.abs(c.nonRealPart(d(a))) > 1e-14 or c.abs(c.nonRealPart(d(b))) > 1e-14 then return 0 end
return d(c.re(d(a))<c.re(d(b))and 1 or 0)
end},
['≥'] = { propetry="op", count = 2,
name="邏輯大於等於",title="不等號",example="7 ≥ 3",description="比較兩數大小",
priority=6, ppriority=6, calc=function(a,b,c,d)
if type(c.mathgteq)==type(noop_func) then return c.mathgteq(d(a),d(b)) end
if c.abs(c.nonRealPart(d(a))) > 1e-14 or c.abs(c.nonRealPart(d(b))) > 1e-14 then return 0 end
return d(c.re(d(a))>=c.re(d(b))and 1 or 0)
end},
['≤'] = { propetry="op", count = 2,
name="邏輯小於等於",title="不等號",example="7 ≤ 3",description="比較兩數大小",
priority=6, ppriority=6, calc=function(a,b,c,d)
if type(c.mathlteq)==type(noop_func) then return c.mathlteq(d(a),d(b)) end
if c.abs(c.nonRealPart(d(a))) > 1e-14 or c.abs(c.nonRealPart(d(b))) > 1e-14 then return 0 end
return d(c.re(d(a))<=c.re(d(b))and 1 or 0)
end},
['&'] = { propetry="op", count = 2,
name="邏輯且",title="逻辑与",example="(1=1) & (1=2)",description="兩邏輯是否皆為真",
priority=5, ppriority=5, calc=function(a,b,c,d)
if type(c.mathand)==type(noop_func) then return c.mathand(d(a),d(b)) end
return d(((c.abs(d(a)) > 1e-14) and (c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['∧'] = { propetry="op", count = 2,
name="邏輯且",title="逻辑与",example="(1=1) & (1=2)",description="兩邏輯是否皆為真",
priority=5, ppriority=5, calc=function(a,b,c,d)
if type(c.mathand)==type(noop_func) then return c.mathand(d(a),d(b)) end
return d(((c.abs(d(a)) > 1e-14) and (c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['↑'] = { propetry="op", count = 2,
name="邏輯與非",title="谢费尔竖线",example="(1=1) ↑ (1=2)",description="兩邏輯是否不全為真",
priority=5, ppriority=5, calc=function(a,b,c,d)
if type(c.mathnand)==type(noop_func) then return c.mathnand(d(a),d(b)) end
return d((not((c.abs(d(a)) > 1e-14) and (c.abs(d(b)) > 1e-14)))and 1 or 0)
end},
['|'] = { propetry="op", count = 2,
name="邏輯或",title="逻辑或",example="(1=1) | (1=2)",description="兩邏輯是否有一者為真",
priority=4, ppriority=4, calc=function(a,b,c,d)
if type(c.mathor)==type(noop_func) then return c.mathor(d(a),d(b)) end
return d(((c.abs(d(a)) > 1e-14) or (c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['∨'] = { propetry="op", count = 2,
name="邏輯或",title="逻辑或",example="(1=1) | (1=2)",description="兩邏輯是否有一者為真",
priority=4, ppriority=4, calc=function(a,b,c,d)
if type(c.mathor)==type(noop_func) then return c.mathor(d(a),d(b)) end
return d(((c.abs(d(a)) > 1e-14) or (c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['↓'] = { propetry="op", count = 2,
name="邏輯或非",title="逻辑或非",example="(1=1) ↓ (1=2)",description="兩邏輯是否全為假",
priority=4, ppriority=4, calc=function(a,b,c,d)
if type(c.mathnor)==type(noop_func) then return c.mathnor(d(a),d(b)) end
return d((not((c.abs(d(a)) > 1e-14) or (c.abs(d(b)) > 1e-14)))and 1 or 0)
end},
['⊕'] = { propetry="op", count = 2,
name="邏輯異或",title="逻辑异或",example="(1=1) ⊕ (1=2)",description="兩邏輯是否相異",
priority=4, ppriority=4, calc=function(a,b,c,d)
if type(c.mathxor)==type(noop_func) then return c.mathxor(d(a),d(b)) end
return d(( ((c.abs(d(a)) > 1e-14) or (c.abs(d(b)) > 1e-14)) and (not((c.abs(d(a)) > 1e-14) and (c.abs(d(b)) > 1e-14))) )and 1 or 0)
end},
['⇔'] = { propetry="op", count = 2,
name="邏輯若且唯若",title="当且仅当",example="(1=1) ⇔ (1=2)",description="兩邏輯是否相同",
priority=4, ppriority=4, calc=function(a,b,c,d)
if type(c.mathxnor)==type(noop_func) then return c.mathxnor(d(a),d(b)) end
return d(((c.abs(d(a)) > 1e-14) == (c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['~'] = { propetry="op", multp = true, count = 2,
name="邏輯非",title="逻辑非",example="~(1=2)",description="邏輯否定",
priority=13, ppriority=13, calc=function(a,b,c,d)
if type(c.mathnot)==type(noop_func) then return c.mathnot(d(b)) end
return d((not(c.abs(d(b)) > 1e-14))and 1 or 0)
end},
['~ '] = { propetry="op", count = 1,
name="邏輯非",title="逻辑非",example="~(1=2)",description="邏輯否定",
priority=13, ppriority=13, calc=function(a,c,d)
if type(c.mathnot)==type(noop_func) then return c.mathnot(d(a)) end
return d((not(c.abs(d(a)) > 1e-14))and 1 or 0)
end},
}
return p