离散q-埃尔米特多项式是以超几何函数定义的正交多项式[1]
![{\displaystyle \displaystyle h_{n}(x;q)=q^{\binom {n}{2}}{}_{2}\phi _{1}(q^{-n},x^{-1};0;q,-qx)=x^{n}{}_{2}\phi _{0}(q^{-n},q^{-n+1};;q^{2},q^{2n-1}/x^{2})=U_{n}^{(-1)}(x;q)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0367e87beaec544d39e524e25ca40bee8994af79)
DISCRETE Q-HERMITE I ABS COMPLEX 3D MAPLE PLOT
|
DISCRETE Q-HERMITE I IM COMPLEX 3D MAPLE PLOT
|
DISCRETE Q-HERMITE I RE COMPLEX 3D MAPLE PLOT
|
DISCRETE Q-HERMITE I ABS DENSITY MAPLE PLOT
|
DISCRETE Q-HERMITE I IM DENSITY MAPLE PLOT
|
DISCRETE Q-HERMITE I RE DENSITY MAPLE PLOT
|
- ^ Roelof Koekoek, p547-549,Springer 2010
- Berg, Christian; Ismael, Mourad, Q-Hermite Polynomials and Classical Orthogonal Polynomials [1], 1994
- Al-Salam, W. A.; Carlitz, L., Some orthogonal q-polynomials, Mathematische Nachrichten, 1965, 30: 47–61, ISSN 0025-584X, MR 0197804, doi:10.1002/mana.19650300105
- Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719, doi:10.2277/0521833574
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., http://dlmf.nist.gov/18, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248