4th order Little q-Laguerre polynomials
小q拉盖尔多项式是一个以基本超几何函数定义的正交多项式

- 大q拉盖尔多项式→小q拉盖尔多项式
在大q拉盖尔多项式中,令
,并令
即得小q拉盖尔多项式
仿射Q克拉夫楚克多项式→ 小q拉盖尔多项式:
令小q拉盖尔多项式
,然后令q→1
即得拉盖尔多项式
- 验证 9阶小q拉盖尔多项式→拉盖尔多项式
作上述代换,


求q→1极限得
令a=3,得
另一方面
=
二者显然相等 QED
LITTLE Q-LAGUERRE POLYNOMIALS ABS COMPLEX 3D MAPLE PLOT
|
LITTLE Q-LAGUERRE POLYNOMIALS IM COMPLEX 3D MAPLE PLOT
|
LITTLE Q-LAGUERRE POLYNOMIALS RE COMPLEX 3D MAPLE PLOT
|
LITTLE Q-LAGUERRE POLYNOMIALS ABS DENSITY MAPLE PLOT
|
LITTLE Q-LAGUERRE POLYNOMIALS IM DENSITY MAPLE PLOT
|
LITTLE Q-LAGUERRE POLYNOMIALS RE DENSITY MAPLE PLOT
|
- Chihara, Theodore Seio, An introduction to orthogonal polynomials, Mathematics and its Applications 13, New York: Gordon and Breach Science Publishers, 1978, ISBN 978-0-677-04150-6, MR 0481884, Reprinted by Dover 2011
- Gasper, George; Rahman, Mizan, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 2nd, Cambridge University Press, 2004, ISBN 978-0-521-83357-8, MR 2128719
- Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, 2010, ISBN 978-3-642-05013-8, MR 2656096, doi:10.1007/978-3-642-05014-5
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., Chapter 18: Orthogonal Polynomials, Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (编), NIST Handbook of Mathematical Functions, Cambridge University Press, 2010, ISBN 978-0521192255, MR2723248
- Van Assche, Walter; Koornwinder, Tom H., Asymptotic behaviour for Wall polynomials and the addition formula for little q-Legendre polynomials, SIAM Journal on Mathematical Analysis, 1991, 22 (1): 302–311 [2024-06-17], ISSN 0036-1410, MR 1080161, doi:10.1137/0522019, (原始内容存档于2024-07-21)
- Wall, H. S., A continued fraction related to some partition formulas of Euler, The American Mathematical Monthly, 1941, 48 (2): 102–108, ISSN 0002-9890, JSTOR 2303599, MR 0003641, doi:10.1080/00029890.1941.11991074