免疫治疗
免疫治疗 | |
---|---|
MeSH | D007167 |
OPS-301 | 8-03 |
免疫治疗(英语:Immunotherapy),是指通过诱导、增强或抑制免疫反应的疾病治疗方法[1]。其中旨在引起或增强免疫反应的免疫疗法,称为激活免疫疗法(activation immunotherapies),而减少或抑制免疫反应则是抑制免疫疗法(suppression immunotherapies)。
免疫疗法往往比现有药物的副作用少,包括减少对微生物疾病的抗药性反应[2]。
基于细胞的免疫疗法对一些癌症有效。免疫效应细胞如淋巴细胞、巨噬细胞、树突状细胞、自然杀手细胞(NK细胞),细胞毒性T淋巴细胞(CTL)等,通过针对肿瘤细胞表面的异常抗原,来共同帮助身体抵御癌症。
粒细胞集落刺激因子(G-CSF)、干扰素、咪喹莫特与细菌细胞膜组分等疗法,已经许可进入临床治疗。其他研究有白细胞介素-2、白细胞介素-7、白细胞介素-12、各种趋化因子、人工合成的CpG寡脱氧核苷酸和葡聚糖等,这些均已进入临床和临床前研究。
免疫调节剂
[编辑]免疫调节剂是一类用于免疫疗法的调节剂,包括各种重组、合成和天然的制剂。
调节剂 | 例子 |
---|---|
白细胞介素 | IL-2、IL-7、IL-12 |
细胞因子 | 干扰素、粒细胞集落刺激因子 |
趋化因子 | CCL3、CCL26、CXCL7 |
其他 | CpG寡脱氧核苷酸、葡聚糖、咪喹莫特 |
激活免疫疗法
[编辑]癌症
[编辑]癌症免疫疗法通过刺激免疫系统来摧毁肿瘤。实践、研究和实验中有一系列策略方法。随机对照研究报告显示,不同类型癌症的免疫治疗中,患者的生存期和无病期都有显著提高[3][4][5][6],与常规治疗方法联合更会增加20%-30%的疗效。
以粒细胞集落刺激因子刺激从病人血液中提取的外周血干细胞产生淋巴细胞,在体外与肿瘤抗原共培养后输回病人体内,并辅以刺激性的细胞因子增强免疫效应[7],该细胞可以摧毁携带相同抗原的肿瘤细胞[8]。
卡介苗免疫治疗已证明对浅表性膀胱癌患者有效[9],通过灌输入膀胱减弱活性的细菌,成功预防高达三分之二的复发案例。
局部免疫疗法是利用免疫增强霜(咪喹莫特)产生干扰素,促使患者的杀手T细胞摧毁疣[10]、光化性角化病、基底细胞癌、阴道上皮内瘤样病变[11]、鳞状细胞癌[9][12]、皮肤淋巴瘤[13]和浅表恶性黑色素瘤[14]。
注射免疫治疗包括流行性腮腺炎、念珠菌、HPV疫苗[15][16]或发癣菌抗原注射剂(以治疗尖锐湿疣)。
树突状细胞刺激
[编辑]医学家可以通过刺激树突状细胞,激活对抗原的细胞毒性反应。树突状细胞是一种从患者体内获取的抗原提呈细胞。它们可通过与抗原脉冲或与病毒载体转染,使其显现抗原。这些活性细胞在注入患者体内后,能够标注出淋巴细胞的抗原(CD4+辅助性T细胞、细胞毒性T细胞和B细胞)。它随后启动细胞毒性抗肿瘤免疫反应,以对抗呈现出抗原的肿瘤细胞(适应性反应已经启动)[18]。癌症疫苗Sipuleucel-T即采用该方法[19]。
T细胞过继转移
[编辑]过继细胞转移体外通过培育自体T细胞以备回输[20]。该T细胞可能已经靶向肿瘤细胞;或者通过转基因技术引导而生。这些T细胞被称之为肿瘤浸润性淋巴细胞,他们与高浓度的白细胞介素-2、抗CD3和同种异体反应性细胞融合。随后一并转移到患者体内,随着白细胞介素-2药效而进一步提高其抗癌活性。
在注入前需要进行受体的淋巴细胞缺失,即消除调节性T细胞以及未修改的内源性淋巴细胞;后者会和转移细胞产生细胞稳态因子竞争[20][21][22][23]。淋巴细胞缺失可以通过实现全身照射实现[24]。在许多案例中,转移细胞增多会伴生外周血,在注射后6-12个月内,T细胞的CD8指标水平会高达75%+[25]。2012年,转移性黑色素瘤的临床试验正在多处进行[26]。
免疫增强疗法
[编辑]自体免疫增强疗法是利用患者的外周血来源自然杀手细胞、细胞毒性T淋巴细胞和其他免疫相关细胞,进行扩容后回输[27]。该疗法已被用于C肝[28][29][30]、慢性疲劳综合征[31][32]和人类疱疹病毒6型感染的试验中[33]。
转基因T细胞
[编辑]转基因T细胞是一类转基因技术。通过提取患者体内感染逆转录病毒的细胞,其包含一份T细胞受体(TCR)基因,用于专门识别肿瘤抗原。病毒结合了受体T细胞的基因组,细胞因此扩大非特异性和/或刺激。然后将细胞回输到患者体内,产生对肿瘤细胞的免疫反应[34]。该技术已在难治性IV期的转移性黑色素瘤[20]和加速期皮肤癌的案例中试验[35][36][37]。
免疫功能恢复
[编辑]免疫疗法的另一个潜在应用是恢复免疫功能缺陷患者的免疫系统。细胞因子、白细胞介素-7和白细胞介素-2已进行临床试验。
疫苗
[编辑]抗微生物剂免疫治疗,包括接种疫苗,涉及激活免疫系统以应对传染性病原体。
抑制免疫疗法
[编辑]抑制免疫疗法,是抑制自体免疫疾病中的异常免疫反应,或者降低正常免疫反应以阻止细胞或者器官移植中的排斥反应。
免疫抑制药物
[编辑]免疫抑制药物可以帮助控制器官移植和自体免疫性疾病。免疫反应依赖于淋巴细胞增殖,基于此免疫抑制剂用于抑制细胞生长。糖皮质激素是一类特定的淋巴细胞活化的抑制剂,而免疫亲和素抑制剂则针对于T淋巴细胞活化目标;免疫抗体针对免疫反应的阶段程度;其他药物调节免疫反应。
免疫耐受
[编辑]人体机能不会天然地对自身组织发动免疫系统攻击。免疫耐受疗法寻求重建免疫系统,在自体免疫疾病或接受器官移植情况中,使身体停止错误地攻击自己的器官[38]。并生成免疫力耐受或消除终身免疫抑制及伴生的副作用。它已经在器官移植、1型糖尿病或其他自体免疫性疾病中进行测试。
过敏
[编辑]免疫疗法可用于治疗过敏。尽管过敏治疗(如抗组胺药或皮质类固醇)可以进行治疗过敏症状,免疫治疗也可以降低灵敏度过敏原,减轻严重过敏反应。
免疫治疗可以产生长期效果[39]。免疫治疗在一些患者中部分有效、或者一类患者完全无效,但它提供了减少或停止患者过敏症状的机会。
该疗法适用于有极度过敏或无法避免具体过敏原的患者。免疫疗法一般不用于食品或药物过敏。这种疗法的人对过敏性鼻炎或哮踹特别有用。在免疫治疗中的第一剂,增加微小的过敏原或抗原量。随着时间的推移增加剂量,患者逐渐消除过敏性。这项技术已用于婴儿疫苗,预防花生过敏[40]。
驱虫疗法
[编辑]猪鞭虫(一类鞭虫)和美洲钩虫已经用于免疫性疾病和过敏反应的测试。驱虫治疗已被视为一类缓解多发性硬化症[41]、克罗恩病[42][43][44]、过敏和哮喘的治疗方法[45]。此类蠕虫的免疫反应调节机制仍属未知。医学家推测它是重新极化的Th1/Th2免疫应答[46],或者树突状细胞功能的调节[47][48]。该类蠕虫通过下调促炎性Th1细胞因子、白细胞介素12(IL-12)、γ-干扰素(IFN-γ)和肿瘤坏死因子(TNF-ά),促进生产调节Th2细胞因子(比如IL-10,IL-4,IL-5和IL-13)[46][49]。
此类蠕虫的共同演化过程,产生了一些基因相关的白细胞介素表达和免疫性障碍(如克罗恩病,溃疡性结肠炎和乳糜泻)。
参见
[编辑]参考
[编辑]- ^ immunotherapies definition. Dictionary.com. [2009-06-02]. (原始内容存档于2014-10-27).
- ^ Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. July 2001, 1 (4): 641–53. PMID 11727500. doi:10.1517/14712598.1.4.641.
- ^ Fujita K, Ikarashi H, Takakuwa K, Kodama S, Tokunaga A, Takahashi T, Tanaka K. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes. Clin. Cancer Res. May 1995, 1 (5): 501–7. PMID 9816009.
- ^ Kimura H, Yamaguchi Y. A phase III randomized study of interleukin-2 lymphokine-activated killer cell immunotherapy combined with chemotherapy or radiotherapy after curative or noncurative resection of primary lung carcinoma. Cancer. July 1997, 80 (1): 42–9. PMID 9210707. doi:10.1002/(SICI)1097-0142(19970701)80:1<42::AID-CNCR6>3.0.CO;2-H.
- ^ Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: a randomised trial. Lancet. September 2000, 356 (9232): 802–7. PMID 11022927. doi:10.1016/S0140-6736(00)02654-4.
- ^ Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T, Matsumoto Y. Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin. Cancer Res. June 2002, 8 (6): 1767–71. PMID 12060615.
- ^ Li K, Li CK, Chuen CK, Tsang KS, Fok TF, James AE, Lee SM, Shing MM, Chik KW, Yuen PM. Preclinical ex vivo expansion of G-CSF-mobilized peripheral blood stem cells: effects of serum-free media, cytokine combinations and chemotherapy. Eur. J. Haematol. February 2005, 74 (2): 128–35. PMID 15654904. doi:10.1111/j.1600-0609.2004.00343.x.
- ^ 巨噬细胞对间充质干细胞成骨分化影响的研究进展. 中国脊柱脊髓杂志. 2016-02-08 [2016-04-20]. (原始内容存档于2021-12-11).
- ^ 9.0 9.1 Järvinen R, Kaasinen E, Sankila A, Rintala E. Long-term efficacy of maintenance bacillus Calmette-Guérin versus maintenance mitomycin C instillation therapy in frequently recurrent TaT1 tumours without carcinoma in situ: a subgroup analysis of the prospective, randomised FinnBladder I study with a 20-year follow-up. Eur. Urol. August 2009, 56 (2): 260–5. PMID 19395154. doi:10.1016/j.eururo.2009.04.009.
- ^ van Seters M, van Beurden M, ten Kate FJ, Beckmann I, Ewing PC, Eijkemans MJ, Kagie MJ, Meijer CJ, Aaronson NK, Kleinjan A, Heijmans-Antonissen C, Zijlstra FJ, Burger MP, Helmerhorst TJ. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med. April 2008, 358 (14): 1465–73. PMID 18385498. doi:10.1056/NEJMoa072685.
- ^ Buck HW, Guth KJ. Treatment of vaginal intraepithelial neoplasia (primarily low grade) with imiquimod 5% cream. J Low Genit Tract Dis. October 2003, 7 (4): 290–3. PMID 17051086. doi:10.1097/00128360-200310000-00011.
- ^ Davidson HC, Leibowitz MS, Lopez-Albaitero A, Ferris RL. Immunotherapy for head and neck cancer. Oral Oncol. September 2009, 45 (9): 747–51. PMID 19442565. doi:10.1016/j.oraloncology.2009.02.009.
- ^ Dani T, Knobler R. Extracorporeal photoimmunotherapy-photopheresis. Front. Biosci. 2009, 14 (14): 4769–77. PMID 19273388. doi:10.2741/3566.
- ^ Eggermont AM, Schadendorf D. Melanoma and immunotherapy. Hematol. Oncol. Clin. North Am. June 2009, 23 (3): 547–64, ix–x. PMID 19464602. doi:10.1016/j.hoc.2009.03.009.
- ^ Chuang CM, Monie A, Wu A, Hung CF. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic anti tumor effects. J. Biomed. Sci. 2009, 16 (1): 49. PMC 2705346 . PMID 19473507. doi:10.1186/1423-0127-16-49.
- ^ Pawlita M, Gissmann L. [Recurrent respiratory papillomatosis: indication for HPV vaccination?]. Dtsch. Med. Wochenschr. April 2009,. 134 Suppl 2: S100–2. PMID 19353471. doi:10.1055/s-0029-1220219 (德语).
- ^ Kang N, Zhou J, Zhang T, Wang L, Lu F, Cui Y, Cui L, He W. Adoptive immunotherapy of lung cancer with immobilized anti-TCRgammadelta antibody-expanded human gammadelta T-cells in peripheral blood. Cancer Biol. Ther. August 2009, 8 (16): 1540–9. PMID 19471115. doi:10.4161/cbt.8.16.8950.
- ^ Overes IM, Fredrix H, Kester MG, Falkenburg JH, van der Voort R, de Witte TM, Dolstra H. Efficient activation of LRH-1-specific CD8+ T-cell responses from transplanted leukemia patients by stimulation with P2X5 mRNA-electroporated dendritic cells. J. Immunother. 2009, 32 (6): 539–51. PMID 19483655. doi:10.1097/CJI.0b013e3181987c22.
- ^ Di Lorenzo G, Buonerba C, Kantoff PW. Immunotherapy for the treatment of prostate cancer. Nature Reviews Clinical Oncology. September 2011, 8 (9): 551–61. PMID 21606971. doi:10.1038/nrclinonc.2011.72.
- ^ 20.0 20.1 20.2 Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer. April 2008, 8 (4): 299–308. PMC 2553205 . PMID 18354418. doi:10.1038/nrc2355.
- ^ Antony PA, Piccirillo CA, Akpinarli A, Finkelstein SE, Speiss PJ, Surman DR, Palmer DC, Chan CC, Klebanoff CA, Overwijk WW, Rosenberg SA, Restifo NP. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. Journal of Immunology. March 2005, 174 (5): 2591–601. PMC 1403291 . PMID 15728465. doi:10.4049/jimmunol.174.5.2591.
- ^ Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, Hwang LN, Yu Z, Wrzesinski C, Heimann DM, Surh CD, Rosenberg SA, Restifo NP. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. October 2005, 202 (7): 907–12. PMC 1397916 . PMID 16203864. doi:10.1084/jem.20050732.
- ^ Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, Theofilopoulos AN. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J. Clin. Invest. July 2002, 110 (2): 185–92. PMC 151053 . PMID 12122110. doi:10.1172/JCI15175.
- ^ Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. November 2008, 26 (32): 5233–9. PMC 2652090 . PMID 18809613. doi:10.1200/JCO.2008.16.5449.
- ^ Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science. October 2002, 298 (5594): 850–4. PMC 1764179 . PMID 12242449. doi:10.1126/science.1076514.
- ^ Pilon-Thomas S, Kuhn L, Ellwanger S, Janssen W, Royster E, Marzban S, Kudchadkar R, Zager J, Gibney G, Sondak VK, Weber J, Mulé JJ, Sarnaik AA. Efficacy of adoptive cell transfer of tumor-infiltrating lymphocytes after lymphopenia induction for metastatic melanoma. J. Immunother. October 2012, 35 (8): 615–20. PMID 22996367. doi:10.1097/CJI.0b013e31826e8f5f.
- ^ Manjunath SR, Ramanan G, Dedeepiya VD, Terunuma H, Deng X, Baskar S, Senthilkumar R, Thamaraikannan P, Srinivasan T, Preethy S, Abraham SJ. Autologous immune enhancement therapy in recurrent ovarian cancer with metastases: a case report. Case Rep Oncol. January 2012, 5 (1): 114–8. PMC 3364094 . PMID 22666198. doi:10.1159/000337319.
- ^ Li Y, Zhang T, Ho C, Orange JS, Douglas SD, Ho WZ. Natural killer cells inhibit hepatitis C virus expression. J. Leukoc. Biol. December 2004, 76 (6): 1171–9. PMID 15339939. doi:10.1189/jlb.0604372.
- ^ Doskali M, Tanaka Y, Ohira M, Ishiyama K, Tashiro H, Chayama K, Ohdan H. Possibility of adoptive immunotherapy with peripheral blood-derived CD3⁻CD56+ and CD3+CD56+ cells for inducing antihepatocellular carcinoma and antihepatitis C virus activity. J. Immunother. March 2011, 34 (2): 129–38. PMID 21304407. doi:10.1097/CJI.0b013e3182048c4e.
- ^ Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int. Rev. Immunol. 2008, 27 (3): 93–110. PMID 18437601. doi:10.1080/08830180801911743.
- ^ See DM, Tilles JG. alpha-Interferon treatment of patients with chronic fatigue syndrome. Immunol. Invest. 1996, 25 (1–2): 153–64. PMID 8675231. doi:10.3109/08820139609059298.
- ^ Ojo-Amaize EA, Conley EJ, Peter JB. Decreased natural killer cell activity is associated with severity of chronic fatigue immune dysfunction syndrome. Clin. Infect. Dis. January 1994,. 18 Suppl 1: S157–9. PMID 8148445. doi:10.1093/clinids/18.Supplement_1.S157.
- ^ Kida K, Isozumi R, Ito M. Killing of human Herpes virus 6-infected cells by lymphocytes cultured with interleukin-2 or -12. Pediatr Int. December 2000, 42 (6): 631–6. PMID 11192519. doi:10.1046/j.1442-200x.2000.01315.x.
- ^ Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. October 2006, 314 (5796): 126–9. PMC 2267026 . PMID 16946036. doi:10.1126/science.1129003.
- ^ Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, Jungbluth A, Gnjatic S, Thompson JA, Yee C. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. June 2008, 358 (25): 2698–703. PMC 3277288 . PMID 18565862. doi:10.1056/NEJMoa0800251.
- ^ 2008 Symposium Program & Speakers. Cancer Research Institute. [2016-04-20]. (原始内容存档于2008-10-15).
- ^ 存档副本. [2020-10-01]. (原始内容存档于2020-05-31).[需要完整来源]
- ^ Rotrosen D, Matthews JB, Bluestone JA. The immune tolerance network: a new paradigm for developing tolerance-inducing therapies. The Journal of Allergy and Clinical Immunology. July 2002, 110 (1): 17–23. PMID 12110811. doi:10.1067/mai.2002.124258.
- ^ Durham SR, Walker SM, Varga EM, Jacobson MR, O'Brien F, Noble W, Till SJ, Hamid QA, Nouri-Aria KT. Long-term clinical efficacy of grass-pollen immunotherapy. N. Engl. J. Med. August 1999, 341 (7): 468–75. PMID 10441602. doi:10.1056/NEJM199908123410702.
- ^ Clinical Trials Search Results - Stanford University School of Medicine. med.stanford.edu. [2016-04-03]. (原始内容存档于2016-10-22).
- ^ Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Annals of Neurology. February 2007, 61 (2): 97–108. PMID 17230481. doi:10.1002/ana.21067.
- ^ Croese J, O'neil J, Masson J, Cooke S, Melrose W, Pritchard D, Speare R. A proof of concept study establishing Necator americanus in Crohn's patients and reservoir donors. Gut. January 2006, 55 (1): 136–7. PMC 1856386 . PMID 16344586. doi:10.1136/gut.2005.079129.
- ^ Reddy A, Fried B. An update on the use of helminths to treat Crohn's and other autoimmunune diseases. Parasitol. Res. January 2009, 104 (2): 217–21. PMID 19050918. doi:10.1007/s00436-008-1297-5.
- ^ Laclotte C, Oussalah A, Rey P, Bensenane M, Pluvinage N, Chevaux JB, Trouilloud I, Serre AA, Boucekkine T, Bigard MA, Peyrin-Biroulet L. [Helminths and inflammatory bowel diseases]. Gastroenterol. Clin. Biol. December 2008, 32 (12): 1064–74. PMID 18619749. doi:10.1016/j.gcb.2008.04.030 (法语).
- ^ Zaccone P, Fehervari Z, Phillips JM, Dunne DW, Cooke A. Parasitic worms and inflammatory diseases. Parasite Immunol. October 2006, 28 (10): 515–23. PMC 1618732 . PMID 16965287. doi:10.1111/j.1365-3024.2006.00879.x.
- ^ 46.0 46.1 Brooker S, Bethony J, Hotez PJ. Human Hookworm Infection in the 21st Century. Advances in Parasitology. 2004, 58: 197–288. ISBN 9780120317585. PMC 2268732 . PMID 15603764. doi:10.1016/S0065-308X(04)58004-1.
- ^ Fujiwara RT, Cançado GG, Freitas PA, Santiago HC, Massara CL, Dos Santos Carvalho O, Corrêa-Oliveira R, Geiger SM, Bethony J. Yazdanbakhsh, Maria , 编. Necator americanus infection: a possible cause of altered dendritic cell differentiation and eosinophil profile in chronically infected individuals. PLoS Negl Trop Dis. 2009, 3 (3): e399. PMC 2654967 . PMID 19308259. doi:10.1371/journal.pntd.0000399.
- ^ Carvalho L, Sun J, Kane C, Marshall F, Krawczyk C, Pearce EJ. Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function. Immunology. January 2009, 126 (1): 28–34. PMC 2632707 . PMID 19120496. doi:10.1111/j.1365-2567.2008.03008.x.
- ^ Fumagalli M, Pozzoli U, Cagliani R, Comi GP, Riva S, Clerici M, Bresolin N, Sironi M. Parasites represent a major selective force for interleukin genes and shape the genetic predisposition to autoimmune conditions. J. Exp. Med. June 2009, 206 (6): 1395–408. PMC 2715056 . PMID 19468064. doi:10.1084/jem.20082779.