跳转到内容

素纽结列表

维基百科,自由的百科全书

素纽结列表素结列表,在结理论英语knot theory素纽结是在连通和运算不可分解英语indecomposable的结。

此处列出了具有10个以下交叉点的素结以便快速比较属性和命名。

素结表

[编辑]

≤6

[编辑]
名称 图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory) 交叉列表
平凡结 01 0a1 0
三叶结 31 3a1 4 6 2 [3] 123:123
Figure-eight knot英语Figure-eight knot (mathematics) 41 4a1 4 6 8 2 [22] 1234:2143

1231\4324

Cinquefoil knot英语Cinquefoil knot 51 5a2 6 8 10 2 4 [5] 12345:12345
Three-twist knot英语Three-twist knot 52 5a1 4 8 10 2 6 [32] 12345:12543

1231\452354

Stevedore knot英语Stevedore knot (mathematics) 61 6a3 4 8 12 10 2 6 [42] 123456:216543

1231\45632654

62 knot英语62 knot 62 6a2 4 8 10 12 2 6 [312] 123456:234165

1231\45632456

63 knot英语63 knot 63 6a1 4 8 10 2 12 6 [2112] 123456:236145

1231\45642356

1231\45236456

图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory) 交叉列表
71英语71 knot 7a7 8 10 12 14 2 4 6 [7] 1-7:1-7
72英语7 2 knot 7a4 4 10 14 12 2 8 6 [52] 1-7:127-3
73 7a5 6 10 12 14 2 4 8 [43]
74英语74 knot 7a6 6 10 12 14 4 2 8 [313]
75 7a3 4 10 12 14 2 8 6 [322]
76 7a2 4 8 12 2 14 6 10 [2212]
77 7a1 4 8 10 12 2 14 6 [21112]
图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory)
81英语8 1 knot 8a­11 4 10 16 14 12 2 8 6 [62]
82 8a8 4 10 12 14 16 2 6 8 [512]
83 8a­18 6 12 10 16 14 4 2 8 [44]
84 8a­17 6 10 12 16 14 4 2 8 [413]
85 8a­13 6 8 12 2 14 16 4 10 [3,3,2]
86 8a­10 4 10 14 16 12 2 8 6 [332]

87 8a6 4 10 12 14 2 16 6 8 [4112]

88 8a4 4 8 12 2 16 14 6 10 [2312]

89 8a­16 6 10 12 14 16 4 2 8 [3113]

810 8a3 4 8 12 2 14 16 6 10 [3,21,2]

811 8a9 4 10 12 14 16 2 8 6 [3212]
812 8a5 4 8 14 10 2 16 6 12 [2222]

813 8a7 4 10 12 14 2 16 8 6 [31112]

814 8a1 4 8 10 14 2 16 6 12 [22112]
815 8a2 4 8 12 2 14 6 16 10 [21,21,2]
816 8a­15 6 8 14 12 4 16 2 10 [.2.20]
817 8a­14 6 8 12 14 4 16 2 10 [.2.2]
818英语Carrick mat 8a­12 6 8 10 12 14 16 2 4 [8*]
819英语Torus knot 8n3 4 8 -12 2 -14 -16 -6 -10 [3,3,2-]
820 8n1 4 8 -12 2 -14 -6 -16 -10 [3,21,2-]
821 8n2 4 8 -12 2 14 -6 16 10 [21,21,2-]
图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory)
环面纽结 9a­41 10 12 14 16 18 2 4 6 8 [9]
92英语9 2 knot 9a­27 4 12 18 16 14 2 10 8 6 [72]
93 9a­38 8 12 14 16 18 2 4 6 10 [63]
94 9a­35 6 12 14 18 16 2 4 10 8 [54]

95 9a­36 6 12 14 18 16 4 2 10 8 [513]

96 9a­23 4 12 14 16 18 2 10 6 8 [522]

97 9a­26 4 12 16 18 14 2 10 8 6 [342]

98 9a8 4 8 14 2 18 16 6 12 10 [2412]

99 9a­33 6 12 14 16 18 2 4 10 8 [423]

910 9a­39 8 12 14 16 18 2 6 4 10 [333]

911 9a­20 4 10 14 16 12 2 18 6 8 [4122]
912 9a­22 4 10 16 14 2 18 8 6 12 [4212]
913 9a­34 6 12 14 16 18 4 2 10 8 [3213]
914 9a­17 4 10 12 16 14 2 18 8 6 [41112]
915 9a­10 4 8 14 10 2 18 16 6 12 [2322]
916 9a­25 4 12 16 18 14 2 8 10 6 [3,3,2+]
917 9a­14 4 10 12 14 16 2 6 18 8 [21312]
918 9a­24 4 12 14 16 18 2 10 8 6 [3222]
919 9a3 4 8 10 14 2 18 16 6 12 [23112]

920 9a­19 4 10 14 16 2 18 8 6 12 [31212]

921 9a­21 4 10 14 16 12 2 18 8 6 [31122]

922 9a2 4 8 10 14 2 16 18 6 12 [211,3,2]
923 9a­16 4 10 12 16 2 8 18 6 14 [22122]

924 9a7 4 8 14 2 16 18 6 12 10 [3,21,2+]

925 9a4 4 8 12 2 16 6 18 10 14 [22,21,2]

926 9a­15 4 10 12 14 16 2 18 8 6 [311112]

927 9a­12 4 10 12 14 2 18 16 6 8 [212112]

928 9a5 4 8 12 2 16 14 6 18 10 [21,21,2+]

929 9a­31 6 10 14 18 4 16 8 2 12 [.2.20.2]

930 9a1 4 8 10 14 2 16 6 18 12 [211,21,2]

931 9a­13 4 10 12 14 2 18 16 8 6 [2111112]

932 9a6 4 8 12 14 2 16 18 10 6 [.21.20]

933 9a­11 4 8 14 12 2 16 18 10 6 [.21.2]

934 9a­28 6 8 10 16 14 18 4 2 12 [8*20]
935 9a­40 8 12 16 14 18 4 2 6 10 [3,3,3]

936 9a9 4 8 14 10 2 16 18 6 12 [22,3,2]

937 9a­18 4 10 14 12 16 2 6 18 8 [3,21,21]

938 9a­30 6 10 14 18 4 16 2 8 12 [.2.2.2]

939 9a­32 6 10 14 18 16 2 8 4 12 [2:2:20]
940 9a­27 6 16 14 12 4 2 18 10 8 [9*]
941 9a­29 6 10 14 12 16 2 18 4 8 [20:20:20]

942 9n4 4 8 10 −14 2 −16 −18 −6 −12 [22,3,2−]

943 9n3 4 8 10 14 2 −16 6 −18 −12 [211,3,2−]

944 9n1 4 8 10 −14 2 −16 −6 −18 −12 [22,21,2−]

945 9n2 4 8 10 −14 2 16 −6 18 12 [211,21,2−]

946 9n5 4 10 −14 −12 −16 2 −6 −18 −8 [3,3,21−]
947 9n7 6 8 10 16 14 −18 4 2 −12 [8*-20]

948 9n6 4 10 −14 −12 16 2 −6 18 8 [21,21,21−]

949 9n8 6 -10 −14 12 −16 −2 18 −4 −8 [−20:−20:−20]

10

[编辑]
图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory)
101英语10 1 knot 10a­75 4 12 20 18 16 14 2 10 8 6 [82]
102 10a­59 4 12 14 16 18 20 2 6 8 10 [712]
103 10a­­117 6 14 12 20 18 16 4 2 10 8 [64]
104 10a­­113 6 12 14 20 18 16 4 2 10 8 [613]
105 10a­56 4 12 14 16 18 2 20 6 8 10 [6112]
106 10a­70 4 12 16 18 20 14 2 10 6 8 [532]
107 10a­65 4 12 14 18 16 20 2 10 8 6 [5212]
108 10a­­114 6 14 12 16 18 20 4 2 8 10 [514]
109 10a­­110 6 12 14 16 18 20 4 2 8 10 [5113]
1010 10a­64 4 12 14 18 16 2 20 10 8 6 [51112]
1011 10a­­116 6 14 12 18 20 16 4 2 10 8 [433]
1012 10a­43 4 10 14 16 2 20 18 6 8 12 [4312]
1013 10a­54 4 10 18 16 12 2 20 8 6 14 [4222]
1014 10a­33 4 10 12 16 18 2 20 6 8 14 [42112]
1015 10a­68 4 12 16 18 14 2 10 20 6 8 [4132]
1016 10a­­115 6 14 12 16 18 20 4 2 10 8 [4123]
1017 10a­­107 6 12 14 16 18 2 4 20 8 10 [4114]
1018 10a­63 4 12 14 18 16 2 10 20 8 6 [41122]
1019 10a­­108 6 12 14 16 18 2 4 20 10 8 [41113]
1020 10a­74 4 12 18 20 16 14 2 10 8 6 [352]
1021 10a­60 4 12 14 16 18 20 2 6 10 8 [3412]
1022 10a­­112 6 12 14 18 20 16 4 2 10 8 [3313]
1023 10a­57 4 12 14 16 18 2 20 6 10 8 [33112]
1024 10a­71 4 12 16 18 20 14 2 10 8 6 [3232]
1025 10a­61 4 12 14 16 18 20 2 10 8 6 [32212]
1026 10a­­111 6 12 14 16 18 20 4 2 10 8 [32113]
1027 10a­58 4 12 14 16 18 2 20 10 8 6 [321112]
1028 10a­44 4 10 14 16 2 20 18 8 6 12 [31312]
1029 10a­53 4 10 16 18 12 2 20 8 6 14 [31222]
1030 10a­34 4 10 12 16 18 2 20 8 6 14 [312112]
1031 10a­69 4 12 16 18 14 2 10 20 8 6 [31132]
1032 10a­55 4 12 14 16 18 2 10 20 8 6 [311122]
1033 10a­­109 6 12 14 16 18 4 2 20 10 8 [311113]
1034 10a­19 4 8 14 2 20 18 16 6 12 10 [2512]
1035 10a­23 4 8 16 10 2 20 18 6 14 12 [2422]
1036 10a5 4 8 10 16 2 20 18 6 14 12 [24112]
1037 10a­49 4 10 16 12 2 8 20 18 6 14 [2332]
1038 10a­29 4 10 12 16 2 8 20 18 6 14 [23122]
1039 10a­26 4 10 12 14 18 2 6 20 8 16 [22312]
1040 10a­30 4 10 12 16 2 20 6 18 8 14 [222112]
1041 10a­35 4 10 12 16 20 2 8 18 6 14 [221212]
1042 10a­31 4 10 12 16 2 20 8 18 6 14 [2211112]
1043 10a­52 4 10 16 14 2 20 8 18 6 12 [212212]
1044 10a­32 4 10 12 16 14 2 20 18 8 6 [2121112]
1045 10a­25 4 10 12 14 16 2 20 18 8 6 [21111112]
1046 10a­81 6 8 14 2 16 18 20 4 10 12 [5,3,2]
1047 10a­15 4 8 14 2 16 18 20 6 10 12 [5,21,2]
1048 10a­79 6 8 14 2 16 18 4 20 10 12 [41,3,2]
1049 10a­13 4 8 14 2 16 18 6 20 10 12 [41,21,2]
1050 10a­82 6 8 14 2 16 18 20 4 12 10 [32,3,2]
1051 10a­16 4 8 14 2 16 18 20 6 12 10 [32,21,2]
1052 10a­80 6 8 14 2 16 18 4 20 12 10 [311,3,2]
1053 10a­14 4 8 14 2 16 18 6 20 12 10 [311,21,2]
1054 10a­48 4 10 16 12 2 8 18 20 6 14 [23,3,2]
1055 10a9 4 8 12 2 16 6 20 18 10 14 [23,21,2]
1056 10a­28 4 10 12 16 2 8 18 20 6 14 [221,3,2]
1057 10a6 4 8 12 2 14 18 6 20 10 16 [221,21,2]
1058 10a­20 4 8 14 10 2 18 6 20 12 16 [22,22,2]
1059 10a2 4 8 10 14 2 18 6 20 12 16 [22,211,2]
1060 10a1 4 8 10 14 2 16 18 6 20 12 [211,211,2]
1061 10a­­123 8 10 16 14 2 18 20 6 4 12 [4,3,3]
1062 10a­41 4 10 14 16 2 18 20 6 8 12 [4,3,21]
1063 10a­51 4 10 16 14 2 18 8 6 20 12 [4,21,21]
1064 10a­­122 8 10 14 16 2 18 20 6 4 12 [31,3,3]
1065 10a­42 4 10 14 16 2 18 20 8 6 12 [31,3,21]
1066 10a­40 4 10 14 16 2 18 8 6 20 12 [31,21,21]
1067 10a­37 4 10 14 12 18 2 6 20 8 16 [22,3,21]
1068 10a­67 4 12 16 14 18 2 20 6 10 8 [211,3,3]
1069 10a­38 4 10 14 12 18 2 16 6 20 8 [211,21,21]
1070 10a­22 4 8 16 10 2 18 20 6 14 12 [22,3,2+]
1071 10a­10 4 8 12 2 18 14 6 20 10 16 [22,21,2+]
1072 10a4 4 8 10 16 2 18 20 6 14 12 [211,3,2+]
1073 10a3 4 8 10 14 2 18 16 6 20 12 [211,21,2+]
1074 10a­62 4 12 14 16 20 18 2 8 6 10 [3,3,21+]
1075 10a­27 4 10 12 14 18 2 16 6 20 8 [21,21,21+]
1076 10a­73 4 12 18 20 14 16 2 10 8 6 [3,3,2++]
1077 10a­18 4 8 14 2 18 20 16 6 12 10 [3,21,2++]
1078 10a­17 4 8 14 2 18 16 6 12 20 10 [21,21,2++]
1079 10a­78 6 8 12 2 16 4 18 20 10 14 [(3,2)(3,2)]
1080 10a8 4 8 12 2 16 6 18 20 10 14 [(3,2)(21,2)]
1081 10a7 4 8 12 2 16 6 18 10 20 14 [(21,2)(21,2)]
1082 10a­83 6 8 14 16 4 18 20 2 10 12 [.4.2]
1083 10a­84 6 8 16 14 4 18 20 2 12 10 [.31.20]
1084 10a­50 4 10 16 14 2 8 18 20 12 6 [.22.2]
1085 10a­86 6 8 16 14 4 18 20 2 10 12 [.4.20]
1086 10a­87 6 8 14 16 4 18 20 2 12 10 [.31.2]
1087 10a­39 4 10 14 16 2 8 18 20 12 6 [.22.20]
1088 10a­11 4 8 12 14 2 16 20 18 10 6 [.21.21]
1089 10a­21 4 8 14 12 2 16 20 18 10 6 [.21.210]
1090 10a­92 6 10 14 2 16 20 18 8 4 12 [.3.2.2]
1091 10a­­106 6 10 20 14 16 18 4 8 2 12 [.3.2.20]
1092 10a­46 4 10 14 18 2 16 8 20 12 6 [.21.2.20]
1093 10a­­101 6 10 16 20 14 4 18 2 12 8 [.3.20.2]
1094 10a­91 6 10 14 2 16 18 20 8 4 12 [.30.2.2]
1095 10a­47 4 10 14 18 2 16 20 8 12 6 [.210.2.2]
1096 10a­24 4 8 18 12 2 16 20 6 10 14 [.2.21.2]
1097 10a­12 4 8 12 18 2 16 20 6 10 14 [.2.210.2]
1098 10a­96 6 10 14 18 2 16 20 4 8 12 [.2.2.2.20]
1099 10a­­103 6 10 18 14 2 16 20 8 4 12 [.2.2.20.20]
10100 10a­­104 6 10 18 14 16 4 20 8 2 12 [3:2:2]
10101 10a­45 4 10 14 18 2 16 6 20 8 12 [21:2:2]
10102 10a­97 6 10 14 18 16 4 20 2 8 12 [3:2:20]
10103 10a­­105 6 10 18 16 14 4 20 8 2 12 [30:2:2]
10104 10a­­118 6 16 12 14 18 4 20 2 8 10 [3:20:20]
10105 10a­72 4 12 16 20 18 2 8 6 10 14 [21:20:20]
10106 10a­95 6 10 14 16 18 4 20 2 8 12 [30:2:20]
10107 10a­66 4 12 16 14 18 2 8 20 10 6 [210:2:20]
10108 10a­­119 6 16 12 14 18 4 20 2 10 8 [30:20:20]
10109 10a­93 6 10 14 16 2 18 4 20 8 12 [2.2.2.2]
10110 10a­­100 6 10 16 20 14 2 18 4 8 12 [2.2.2.20]
10111 10a­98 6 10 16 14 2 18 8 20 4 12 [2.2.20.2]
10112 10a­76 6 8 10 14 16 18 20 2 4 12 [8*3]
10113 10a­36 4 10 14 12 2 16 18 20 8 6 [8*21]
10114 10a­77 6 8 10 14 16 20 18 2 4 12 [8*30]
10115 10a­94 6 10 14 16 4 18 2 20 12 8 [8*20.20]
10116 10a­­120 6 16 18 14 2 4 20 8 10 12 [8*2:2]
10117 10a­99 6 10 16 14 18 4 20 2 12 8 [8*2:20]
10118 10a­88 6 8 18 14 16 4 20 2 10 12 [8*2:.2]
10119 10a­85 6 8 14 18 16 4 20 10 2 12 [8*2:.20]
10120 10a­­102 6 10 18 12 4 16 20 8 2 14 [8*20::20]
10121 10a­90 6 10 12 20 18 16 8 2 4 14 [9*20]
10122 10a­89 6 10 12 14 18 16 20 2 4 8 [9*.20]
10123 10a­­121 8 10 12 14 16 18 20 2 4 6 [10*]
10124英语Torus knot 10n­21 4 8 -14 2 -16 -18 -20 -6 -10 -12 [5,3,2-]
10125 10n­15 4 8 14 2 -16 -18 6 -20 -10 -12 [5,21,2-]
10126 10n­17 4 8 -14 2 -16 -18 -6 -20 -10 -12 [41,3,2-]
10127 10n­16 4 8 -14 2 16 18 -6 20 10 12 [41,21,2-]
10128 10n­22 4 8 -14 2 -16 -18 -20 -6 -12 -10 [32,3,2-]
10129 10n­18 4 8 14 2 -16 -18 6 -20 -12 -10 [32,21,-2]
10130 10n­20 4 8 -14 2 -16 -18 -6 -20 -12 -10 [311,3,2-]
10131 10n­19 4 8 -14 2 16 18 -6 20 12 10 [311,21,2-]
10132 10n­13 4 8 -12 2 -16 -6 -20 -18 -10 -14 [23,3,2-]
10133 10n4 4 8 12 2 -14 -18 6 -20 -10 -16 [23,21,2-]
10134 10n6 4 8 -12 2 -14 -18 -6 -20 -10 -16 [221,3,2-]
10135 10n5 4 8 -12 2 14 18 -6 20 10 16 [221,21,2-]
10136 10n3 4 8 10 -14 2 -18 -6 -20 -12 -16 [22,22,2-]
10137 10n2 4 8 10 -14 2 -16 -18 -6 -20 -12 [22,211,2-]
10138 10n1 4 8 10 -14 2 16 18 -6 20 12 [211,211,2-]
10139 10n­27 4 10 -14 -16 2 -18 -20 -6 -8 -12 [4,3,3-]
10140 10n­29 4 10 -14 -16 2 18 20 -8 -6 12 [4,3,21-]
10141 10n­25 4 10 -14 -16 2 18 -8 -6 20 12 [4,21,21-]
10142 10n­30 4 10 -14 -16 2 -18 -20 -8 -6 -12 [31,3,3-]
10143 10n­26 4 10 -14 -16 2 -18 -8 -6 -20 -12 [31,3,21-]
10144 10n­28 4 10 14 16 2 -18 -20 8 6 -12 [31,21,21-]
10145 10n­14 4 8 -12 -18 2 -16 -20 -6 -10 -14 [22,3,3-]
10146 10n­23 4 8 -18 -12 2 -16 -20 -6 -10 -14 [22,21,21-]
10147 10n­24 4 10 -14 12 2 16 18 -20 8 -6 [211,3,21-]
10148 10n­12 4 8 -12 2 -16 -6 -18 -20 -10 -14 [(3,2)(3,2-)]
10149 10n­11 4 8 -12 2 16 -6 18 20 10 14 [(3,2)(21,2-)]
10150 10n9 4 8 -12 2 -16 -6 -18 -10 -20 -14 [(21,2)(3,2-)]
10151 10n8 4 8 -12 2 16 -6 18 10 20 14 [(21,2)(21,2-)]
10152 10n­36 6 8 12 2 -16 4 -18 -20 -10 -14 [(3,2)-(3,2)]
10153 10n­10 4 8 12 2 -16 6 -18 -20 -10 -14 [(3,2)-(21,2)]
10154 10n7 4 8 12 2 -16 6 -18 -10 -20 -14 [(21,2)-(21,2)]
10155 10n­39 6 10 14 16 18 4 -20 2 8 -12 [-3:2:2]
10156 10n­32 4 12 16 -14 18 2 -8 20 10 6 [-3:2:20]
10157 10n­42 6 -10 -18 14 -2 -16 20 8 -4 12 [-3:20:20]
10158 10n­41 6 -10 -16 14 -2 -18 8 20 -4 -12 [-30:2:2]
10159 10n­34 6 8 10 14 16 -18 -20 2 4 -12 [-30:2:20]
10160 10n­33 4 12 -16 -14 -18 2 -8 -20 -10 -6 [-30:20:20]
10161[a] 10n­31 4 12 -16 14 -18 2 8 -20 -10 -6 [3:-20:-20]
10162[b] 10n­40 6 10 14 18 16 4 -20 2 8 -12 [-30:-20:-20]
10163[c] 10n­35 6 8 10 14 16 -20 -18 2 4 -12 [8*-30]
10164[d] 10n­38 6 -10 -12 14 -18 -16 20 -2 -4 -8 [8*2:-20]
10165[e] 10n­37 6 8 14 18 16 4 -20 10 2 -12 [8*2:.-20]

>10

[编辑]
Kinoshita–Terasaka & Conway knots

链接表(Table of prime links)

[编辑]

≤7

[编辑]
名称 图像 亚历山大-布里格斯-罗尔夫森符号 Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory)
Unlink英语Unlink 02
1
Hopf link英语Hopf link 22
1
L2a1 [2]
Solomon's
knot
英语Solomon's knot
42
1
L4a1 [4]
Whitehead
link
英语Whitehead link
52
1
L5a1 [212]
L6a1 62
3
L6a1
L6a2 62
2
L6a2
L6a3 62
1
L6a3
三不互扣环 63
2
L6a4 [.1]
L6a5 63
1
L6a5
L6n1 63
3
L6n1
L7a1 72
6
L7a1
L7a2 72
5
L7a2
L7a3 72
4
L7a3
L7a4 72
3
L7a4
L7a5 72
2
L7a5
L7a6 72
1
L7a6
L7a7 73
1
L7a7
L7n1 72
7
L7n1
L7n2 72
8
L7n2 (6,-8|-10,12,-14,2,-4)

>7

[编辑]
(36,3)-torus link
图像 Alexander–Briggs–Rolfsen Dowker–Thistlethwaite表示法英语Dowker–Thistlethwaite notation 道克符号英语Dowker notation 康威符号英语Conway notation (knot theory)
82
1
L8a14
L10a140英语L10a140 link [.3:30]

参见

[编辑]

注释

[编辑]
  1. ^ Originally listed as both 10161 and 10162 in the Rolfsen table. The error was discovered by Kenneth Perko (see Perko pair英语Perko pair).
  2. ^ Listed as 10163 in the Rolfsen table.
  3. ^ Listed as 10164 in the Rolfsen table.
  4. ^ Listed as 10165 in the Rolfsen table.
  5. ^ Listed as 10166 in the Rolfsen table.

外部链接

[编辑]