粒子衰變是一基本粒子變成其他基本粒子的自發過程。在這個過程中,一基本粒子變成質量更輕的另一種基本粒子,及一中間粒子,例如緲子衰變中的W玻色子。這中間粒子隨即變成其他粒子。如果生成的粒子不穩定,那麼衰變過程還會繼續。
粒子衰變這種過程,與放射性衰變不一樣,後者為一不穩定的原子核,變成一更小的原子核,當中還伴隨着粒子或輻射的發射。
注意本條目使用自然單位,即
- 。
所有數值均來自粒子數據小組:
種類
|
名稱
|
符號
|
能量 (MeV)
|
平均壽命
|
輕子
|
電子 / 正電子
|
|
0.511
|
年
|
緲子 / 反緲子
|
|
105.6
|
秒
|
陶子 / 反陶子
|
|
1777
|
秒
|
介子
|
中性π介子
|
|
135
|
秒
|
帶電π介子
|
|
139.6
|
秒
|
重子
|
質子 / 反質子
|
|
938.2
|
年
|
中子 / 反中子
|
|
939.6
|
秒
|
玻色子
|
W玻色子
|
|
80,400
|
秒
|
Z玻色子
|
|
91,000
|
秒
|
把一粒子的平均壽命標記為,這樣粒子在時間t後仍生還(即未衰變)的機率為
- 其中
- 為該粒子的勞侖茲因子。
設一粒子質量為M,則衰變率可用下面的通用公式表示
- 其中
- n為原衰變所生成的粒子數,
- 為連接始態與終態的不變矩陣上的元,
- 為相空間的元,及
- 為粒子i 的四維動量。
相空間可由下式所得,
- 其中
- 為四維的狄拉克δ函數。
作為例子,一粒子衰變成三粒子時的相空間元如下:
一粒子的四維動量又叫其不變質量。
一粒子的四維動量平方,定義為其能量平方與其三維動量平方間的差(注意從這開始,採用的單位都能滿足光速等於1這項條件):
兩粒子的四維動量平方為
- 。
在所有衰變及粒子相互作用中,四維動量都必須守恆,因此始態pi 與終態pf 的關係為
- 。
設母粒子質量為M,衰變成兩粒子(標記為1和2),那麼四維動量的守恆條件則為
- 。
整理可得,
然後取左右兩邊的平方
- 。
現在要用的正是四維動量的定義——方程式(1),展開各p2 得
若進入母粒子的靜止系,則
- ,及
將上述兩式代入方程式(2)得:
整理後得粒子1於母粒子靜止系中的能量公式,
同樣地,粒子2在母粒子在靜止系中的能量為
- 。
可得
先把 代入方程式(3):
的推導也一樣。
在質心系中,看起來靜止的母粒子衰變成兩相同質量的粒子,造成它們在夾角為180°的情況下發射。
...而在
實驗室系中,母粒子大概以接近
光速的速度移動,因此所發射的兩粒子,其角度會與質心系的不一樣。
在實驗室系中發射粒子的角度,與質心系時的關係由下式表示:
設一母粒子質量為M ,衰變成兩粒子,標記為1和2。那麼在母粒子的靜止系中,
- 。
另外,用球座標表示則為
- 。
已知二體衰變的相空間元(見上文#衰變率一節,n=2),得母粒子參考系中的衰變率為:
- 。