高級Z轉換(英語:Advanced z-transform,或 modified z-transform)是Z轉換的延伸,是數學及信號處理領域中的工具,它將不是取樣週期整數倍的延遲考慮進去。具有以下形式
![{\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/913589e3306b1580d16c4f2092eb498a494e0c54)
其中
- m為延遲參數(delay parameter),
![{\displaystyle 0\leq m<T}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b76206f983765de307aa88f1a958ad6efbac4816)
如果延遲參數m固定,則Z轉換具有的性質在高級Z轉換也都成立。
![{\displaystyle {\mathcal {Z}}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/82575aeb7965244c3f8099e367632f43c6ab0c6f)
![{\displaystyle {\mathcal {Z}}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/673f20b62af53c3b16b08825c05b08351b830275)
![{\displaystyle {\mathcal {Z}}\left\{f(t)e^{-a\,t}\right\}=e^{-a\,m}F(e^{a\,T}z,m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9d9587e1771a2e3522ae5125a1b82a61e4902ad4)
![{\displaystyle {\mathcal {Z}}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/63fa5cecec3678a0eb1fc3d9800889e77cd0e7ff)
![{\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/be2cc94002a73d9069534f67193a9a5d5f323af6)
以下計算
的高級Z轉換:
![{\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8eba900bf17838d0efe50bf33f7627031d317a2c)
若
,則
簡化為
![{\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0ec2ca9c6096f69694fcaaa258e005db0fa4dc11)
正是
的Z轉換
- Eliahu Ibrahim Jury, Theory and Application of the z-Transform Method, Krieger Pub Co, 1973. ISBN 0-88275-122-0.