跳至內容

廣義最小二乘法

維基百科,自由的百科全書

廣義最小二乘法(英語:generalized least squares,GLS)是統計學中的一個方法,當回歸模型中的殘差之間存在一定程度的相關性時,它可以被用於估計線性回歸模型中的未知參數。最小二乘法和加權最小二乘法可能需要提高統計效率並防止誤導性推論。GLS由新西蘭數學家亞歷山大·艾特肯(Alexander Aitken)於1935年首次描述。

概述

[編輯]

在一個標準線性回歸中,有數據組

因變量有:預測變量被放入了如下的設計矩陣這裡每行是一個有預測變量的向量,每行對應第個數據點。這個模型假設下的的條件均值將會是的線性函數,且在下的方差是一個非奇異方差矩陣,有這裡是一個含有未知常數的矩陣,稱為回歸係數(regression coefficients),它們從回歸中預測得到。如果可能的值,則對的殘餘值是。廣義最小二乘法通過最小化馬哈拉諾比斯距離來預測相當於這是一個二次規劃問題。目標函數的駐點出現在以下情況:所以:數量稱為精度矩陣(或分散矩陣),是對角權重矩陣的推廣。