多項式(英語:Polynomial)是代數學中的基礎概念,是由稱為未知數的變量和稱為係數的常數通過有限次加減法、乘法以及自然數冪次的乘方運算得到的代數表達式。多項式是整式的一種。未知數只有一個的多項式稱為一元多項式;例如就是一個三項一元二次多項式。未知數不止一個的多項式稱為多元多項式,例如就是一個三項三元三次多項式,一個多項式有幾次取決於最高的那個項的次數。(xy屬於二次)
可以寫成只由一項構成的多項式也稱為單項式。如果一項中不含未知數,則稱之為常數項。
多項式在數學的很多分支中乃至許多自然科學以及工程學中都有重要作用。
給定一個環(通常是交換環,可以是有理數、實數或者複數等等)以及一個未知數,則任何形同:
的代數表達式叫做上的一元多項式。其中是中的元素。未知數不代表任何值,但環上的所有運算都對它適用。在不至於混淆的情形下,一般將一元多項式簡稱為多項式。可以證明,兩個多項式的和、差與積仍然是多項式,即多項式組成一個環,稱爲上的(一元)多項式環。而所有的二元多項式則可以定義為所有以一元多項式為係數的多項式,即形同
的代數表達式。其中都是中的元素。全體這樣的表達式也構成一個環,記為。以此類推,可以定義所有元多項式集合:
多項式總可以表示為有限個元素的和,其中每個元素都是未知數與中一個常數的乘積,這樣的元素稱為多項式的項,其中的常數稱為該項的係數。在中,多項式的每一項都是形同的乘積形式。其中是係數,被稱為在這一項中的次數。所有之和稱為這一項的次數。比如在以下這一項:
中,係數是,不定元的次數是,的次數是,這一項的次數是。可以寫成只由一項構成的多項式也稱為單項式。如果一項中不含未知數,則稱之為常數項。
某個未知數在多項式各項中最大的次數稱為多項式中未知數的次數,擁有這樣次數的的項被稱為的最高次項。所有項的次數中最高的稱為多項式的次數。對於一元多項式來說,唯一的未知數的次數也稱為多項式的次數,未知數的最高次項也稱為多項式的最高次項。
例如多項式:中的次數最高,是,故此多項式的次數為四。因而此多項式可稱為三元四次四項式。稱為四次項,、稱為一次項或線性項,而是零次項或常數項。
多項式的次數記作。約定零多項式沒有次數,也沒有未知數。常數多項式分為零次多項式(非零常數)和零多項式。一次多項式又稱為線性多項式。多項式中的一次項又稱為線性項。如果某個多項式的所有項都有相同次數,則稱其為齊次多項式。
一個一元多項式被稱為首一多項式,如果它的最高次項的係數是的單位元。
選定一個未知數後,多項式可依各項中該未知數的次數以降序或升序排列。次數從低到高是升冪排列。次數從高到低是降冪排列。例如
是依X的次數降冪排列。
兩個多項式相加可以看作是對兩組單項式的和進行重組與合併同類項。通過加法結合律,可以將同類項放在一起,合併之後就得到了兩個多項式的和[1][2]。例如以下的兩個多項式:
它們的和是:
化簡之後得到:
例:、則
例如以下的兩個多項式:
計算它們的乘積,步驟如下:
化簡之後得到:
和整數之間的帶餘除法類似。可以證明,設有多項式和非零多項式,則存在唯一的多項式和,滿足:
其中多項式若非零多項式,則其次數嚴格小於的次數。
作為特例,如果要計算某個多項式除以一次多項式得到的餘多項式,可以直接將代入到多項式中。除以的餘多項式是。
具體的計算可以使用類似直式除法的方式。例如,計算除以,列式如下:
因此,商式是,餘式是。
令
則,應用多項式乘法的矩陣算法,越右側代表越高次項。
首先,從高次方作f(x)除以g(x),求
再求
[3]
MATLAB程式實作
f = [1 -1 -2 1 3 -1];
g = [3 -1 1 -1];
zero_pad = zeros(1, length(f) - length(g));
g = toeplitz([3 zero_pad], [3 -1 1 -1 zero_pad]);
[row_len, col_len] = size(g);
q = f(end - row_len + 1 : end) / g(:, end - row_len + 1 : end)
r = f(1 : end - row_len) - q * g(:, 1 : end - row_len)
因式分解是指把一個多項式分解成幾個(非常數的)多項式的乘積。其中的每一個多項式稱為原多項式的因式。因式分解有助於理解多項式的性質,比如根的分布等等。因式分解的結果通常和多項式所在的係數域有關。如果要求因式分解後的每一個因式都在一定的係數域(比如有理數域)裡面,那麼結果可能和要求它們在另一個係數域(比如說複數域)里不同。比如多項式在有理數域內分解為:
在實數域內則可以進一步分解為:
在複數域內還可以再進一步分解:
- 。
如果給定了係數域,那麼在不考慮因式排列順序的情況下,因式分解是唯一的。如果(在給定的係數域上)一個多項式不能被表示為次數嚴格比它低的多項式的乘積,就稱它為不可約多項式。因式分解一般是指將多項式分解到不可再分的多項式乘積,也就是不可約多項式的乘積,否則稱其為不完全的因式分解。
對於一元多項式來說,所有復係數多項式都可以分解成若干個一次因式的乘積,這個結論等價於代數基本定理。所有實係數多項式都可以分解為次數不超過二次的多項式的乘積。比較複雜的是有理數係數多項式的因式分解。首先,給定一個有理係數多項式,可以將其乘以一個特定的有理數,將其變成一個整係數多項式,所以有理係數多項式和整係數多項式的因式分解是等價的。如果一個整係數多項式各項係數的最大公約數是,就稱其為本原多項式。不是本原多項式的整係數多項式,假設其各項係數的最大公約數是,那麼可以將的因式分解問題轉化為本原多項式的因式分解問題。所以有理數係數和整係數多項式的因式分解都等價於本原多項式的因式分解問題。利用本原多項式可以證明:整係數多項式如果能分解為有理係數多項式的乘積,那麼也必然能分解成整係數多項式的乘積。艾森斯坦判別法給出了判定整係數多項式不可約的充分條件。另一個常用的準則與多項式的最高次項係數與常數項係數有關。如果某個多項式有某個有理數根(既約形式),那麼分子必然整除常數項係數,而分母也必然整除最高次項係數。
多項式函數是指給多項式中的不定元賦值的映射。比如說一元多項式函數的普遍形式為:
-
其中的是一個代數,可以是有理數、實數或複數。多項式函數是函數而不是多項式,但多項式函數之間也可以進行像多項式一般的加法、乘法運算,其結果仍舊是多項式函數。所以所有的多項式函數也構成一個環,而且這個環顯然和多項式環同構。
與多元多項式對應的也有多元多項式函數。比如就是一個與二元多項式對應的二元多項式函數。
所有多項式函數都是光滑函數(無限可微連續函數),因此可以定義其導數、原函數等概念。另外,當每個變量都趨於無窮大(絕對值)的時候,多項式函數的值(絕對值)也趨於無窮大。
如果把(一元)多項式中的所有係數全都約束為到某個正整數之間的整數(不包括),再把代入多項式函數計算,這其實相當於寫出一個進制整數——按降冪排列,每一項係數(沒有則補零)正是對應位置的數字。例如,可看作時的。
多項式方程是指多項式函數構成的方程。給定多項式,則對應的多項式函數可以構造方程:
- 。
例如:
就是一個多項式方程。
如果某個使得多項式方程,那麼就稱為多項式方程的解,或多項式函數的一個根或零點。多項式函數的根與多項式有如下關係:如果某個是多項式函數的一個根,那麼一次多項式整除多項式,也就是說存在多項式,使得:;反之亦然。如果存在(一般來說大於的)正整數,使得,那麼稱是多項式函數的一個重根。
多項式的根是否存在以及根的數目取決於多項式的係數域以及指定的根所在的域。代數基本定理說明,復係數多項式在複數域內必然有至少一個根。這可以推出,次多項式函數必定有個根。這裡說的個根指包括了重根的情況。另外可以證明,奇數次實係數多項式在實數域內至少有一個根。
是兩個不同的項
若存在i使得,但,則在前
例如,這種排列法稱為字典排列法。[4]
多項式函數在分析學中有重要的作用。由於多項式函數有簡潔明確的形式,很容易對其進行量化分析。比如,多項式函數
- 。
它的導函數是:
- 。
它的原函數(族)是:
- 。
這個定義可以類比到多項式本身,令多項式中也定義導數的概念。多項式的導數多項式是:
- 。
它的積分多項式則是:
- 。
一個次多項式(大於等於)的導數多項式是一個次多項式。常數多項式的導數多項式是零多項式。它的積分多項式則是一個次多項式。和分別稱為多項式的微分算子和積分算子。
多項式可以推廣到係數在任意一個環的情形,請參閱條目多項式環。