跳至內容

幾何數論

維基百科,自由的百科全書

數論中,幾何數論(英語:Geometry of numbers)研究凸體和在n空間整數點向量問題。幾何數論於1910由赫爾曼·閔可夫斯基創立。幾何數論和數學其它領域有密切的關係,尤其研究在泛函分析丟番圖逼近中,對有理數無理數逼近問題。[1]

閔可夫斯基的結果

[編輯]
  • 閔可夫斯基定理,有時也被稱為閔可夫斯基第一定理:
假設Γ是在n歐氏空間RnK是中心對稱凸體 ,則K包含Γ非零的向量。
  • 閔可夫斯基第二定理,是他的第一定理加強。定義K數字λ最大下界,為 λk,稱為連續最低。

則λK在Γ中ķ線性無關,則有:

近現代幾何數論研究

[編輯]

在1930年至1960年的很多數論學家取得了很多成果(包括路易·莫德爾哈羅德·達文波特卡爾·路德維希·西格爾)。近年來,Lenstra,奧比昂,巴爾維諾克對組合理論的擴展對一些凸體的格數量進行了列舉。

  • 施密特子空間定理
  • 在幾何數論的子空間定理,由沃爾夫岡·施密特在1972年證明
  • n是正整數,如果nn維線性型L1,...,Ln都具有代數係數,並且是線性無關的,那麼對於任何給定的實數ε> 0,所有滿足條件: 的n維非零整數點x都在有限多個Qn的真子空間內。

對泛函分析的影響

[編輯]

始於閔可夫斯基的幾何數論在泛函分析上產生深遠的影響。閔可夫斯基證明,對稱凸體誘導有限維向量空間範數。閔可夫斯基定理由柯爾莫哥洛夫推廣到拓撲向量空間。柯爾莫哥洛夫的定理證明有界閉對稱凸集生成Banach空間拓撲。當前Kalton et alia. Gardner對星形集非凸集取得了一些成果。

參考文獻

[編輯]
  1. ^ Schmidt's books. Grötschel et alia, Lovász et alia, Lovász.

延伸閱讀

[編輯]
  • Matthias Beck, Sinai Robins. Computing the continuous discretely: Integer-point enumeration in polyhedra, Undergraduate texts in mathematics, Springer, 2007.
  • Enrico Bombieri; Vaaler, J. On Siegel's lemma. Inventiones Mathematicae. Feb 1983, 73 (1): 11–32. doi:10.1007/BF01393823.  [永久失效連結]
  • Enrico Bombieri and Walter Gubler. Heights in Diophantine Geometry. Cambridge U. P. 2006. 
  • J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer Classics in Mathematics, Springer-Verlag 1997 (reprint of 1959 and 1971 Springer-Verlag editions).
  • John Horton Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, NY, 3rd ed., 1998.
  • R. J. Gardner, Geometric tomography, Cambridge University Press, New York, 1995. Second edition: 2006.
  • P. M. Gruber, Convex and discrete geometry, Springer-Verlag, New York, 2007.
  • P. M. Gruber, J. M. Wills (editors), Handbook of convex geometry. Vol. A. B, North-Holland, Amsterdam, 1993.
  • M. Grötschel, L. Lovász, A. Schrijver: Geometric Algorithms and Combinatorial Optimization, Springer, 1988
  • Hancock, Harris. Development of the Minkowski Geometry of Numbers. Macmillan. 1939.  (Republished in 1964 by Dover.)
  • Edmund Hlawka, Johannes Schoißengeier, Rudolf Taschner. Geometric and Analytic Number Theory. Universitext. Springer-Verlag, 1991.
  • Kalton, Nigel J.; Peck, N. Tenney; Roberts, James W., An F-space sampler, London Mathematical Society Lecture Note Series, 89, Cambridge: Cambridge University Press: xii+240, 1984, ISBN 0-521-27585-7, MR 0808777 
  • C. G. Lekkerkererker. Geometry of Numbers. Wolters-Noordhoff, North Holland, Wiley. 1969.
  • Lenstra, A. K.; Lenstra, H. W., Jr.; Lovász, L. Factoring polynomials with rational coefficients. Mathematische Annalen. 1982, 261 (4): 515–534. MR 0682664. doi:10.1007/BF01457454. 
  • L. Lovász: An Algorithmic Theory of Numbers, Graphs, and Convexity, CBMS-NSF Regional Conference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986
  • Malyshev, A.V., Geometry of numbers, Hazewinkel, Michiel (編), 数学百科全书, Springer, 2001, ISBN 978-1-55608-010-4 
  • Minkowski, Hermann, Geometrie der Zahlen, Leipzig and Berlin: R. G. Teubner, 1910, MR 0249269 
  • Wolfgang M. Schmidt. Diophantine approximation. Lecture Notes in Mathematics 785. Springer. (1980 [1996 with minor corrections])
  • Wolfgang M. Schmidt.Diophantine approximations and Diophantine equations, Lecture Notes in Mathematics, Springer Verlag 2000.
  • Siegel, Carl Ludwig. Lectures on the Geometry of Numbers. Springer-Verlag. 1989. 
  • Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, Cambridge, 1993.
  • Anthony C. Thompson, Minkowski geometry, Cambridge University Press, Cambridge, 1996.