跳转到内容

鼠标

本页使用了标题或全文手工转换
维基百科,自由的百科全书
“滑鼠”的各地常用名称
滑鼠,拥有最常见的基本配备:两个按键和滚轮。
中国大陆鼠标
台湾滑鼠
港澳滑鼠
新马滑鼠

滑鼠(英语:computer mouse),是一种电脑使用的定点输入设备,可以对屏幕上的游标进行定位,并通过按键和滚轮装置对游标所经过位置的屏幕元素进行操作。滑鼠的鼻祖于1968年出现。美国科学家道格拉斯·恩格尔巴特加利福尼亚制作了第一个滑鼠。

发展历史

[编辑]
道格拉斯·恩格尔巴特发明的第一个滑鼠。
  • 1967年,滑鼠的原型诞生。
  • 1968年12月9日,世界上的第一个滑鼠诞生于美国史丹福大学。它的发明者是道格拉斯·恩格尔巴特博士。这个滑鼠的设计目的,是为了用滑鼠来代替键盘那繁琐的指令,从而使计算机的操作更加简便。这个滑鼠的外形是一个小木头盒子,其工作原理是由它底部的小球带动枢轴转动,继而带动变阻器改变阻值来产生位移信号,并将信号传至主机。
  • 1973年,第一台带有滑鼠的电脑Xerox Alto发布[1]
  • 1980年代初,出现了第一代的光电滑鼠,这类光电滑鼠具有比机械滑鼠更高的精确度。但是它必须工作在特殊的印有细微格栅的光电滑鼠垫上。这种滑鼠过高的成本限制了其使用范围。
  • 1981年,第一个商业化滑鼠诞生。
  • 1983年,罗技发明了第一个光学机械式滑鼠,也就是我们今天所说的机械滑鼠。这种滑鼠结构成为了事实上的行业标准
  • 1999年,安捷伦公司(Agilent,后改组为安华高, Avago)发布了IntelliEye光学引擎,继而市场上出现了不需要专用滑鼠垫的光电滑鼠,光电滑鼠的普及由此开始。
  • 2003年,罗技与微软分别推出以蓝牙为通讯协定的蓝牙滑鼠。
  • 2005年,罗技与安华高合作推出第一款雷射滑鼠(无线,可充电, Logitech MX1000)。
  • 2006年,第一只克服玻璃障碍[注 1]的有线雷射滑鼠问世(DEXIN, ML45)。
  • 2006年,蓝牙雷射滑鼠问世(Acrox)。
  • 2008年,微软推出采用Blue Track技术的蓝光滑鼠,几乎兼容所有介面(Microsoft SideWinder X8)。
  • 2009年,罗技推出DarkField雷射追踪技术。此技术基本上仍是采用雷射辨识,结合运用在实验室的“暗视野(Darkfield)”显微镜技术,让滑鼠也能看到透明材质中的小瑕疵、灰尘、微粒等微小物质,并借此提供辨识定位资讯。(Logitech M905、M950)[2]
  • 2009年,苹果公司推出Magic Mouse,采用承袭自iPhoneiPod Touch、MacBook的多点触控技术,把所有滑鼠按键、滚轮都拿掉,只以一整片多点触控板,就能提供等同一般滑鼠的左、右键,以及360度滚轮功能,并能以两指操作更多手势功能。[3]

技术

[编辑]
光学机械滑鼠工作原理
1:移动滑鼠带动滚球。
2:X方向和Y方转杆传递滑鼠移动。
3:旋转编码器的光学刻度盘。
4:晶体管发射红外线可穿过刻度盘的小孔。
5:光学传感器接收红外线并转换为平面移动速度。

滑鼠的光学传感器灵敏度使用DPIDots Per Inch,点每英寸)或CPICounts Per Inch,每英寸测量数)量度,测量频率使用FPSFlashes Per Second,每秒刷新次数)量度。

分类

[编辑]

依据移动感应技术的分类如下:

  • 机械滑鼠
  • 早期光学滑鼠(需要印有特定条纹的滑鼠垫)
  • 光学机械滑鼠(滑鼠内有一颗滚球, 现今已少见)
  • 光学滑鼠(现代的主流,无需特定条纹的滑鼠垫)
  • 雷射滑鼠
  • 蓝光滑鼠
  • 蓝影滑鼠

按键数量

[编辑]
苹果电脑的滑鼠只有一个按键,最左边的为1984年麦金塔电脑所配备的滑鼠
  • 单键滑鼠:单一按键,苹果公司从早期的Mac系统使用至今,仅加入触控来代替多按键,其目的是单一按键不会按错,与当时一般PC上的双键或三键滑鼠有别。
  • 双键滑鼠:双按键,早年PC上曾广泛使用,现已极少出现;早期的Mac系统目前有部分使用。
  • 三键滑鼠:左右键加中键,早年PC上曾广泛使用,现已甚少出现。
  • 三键滚轮滑鼠:左右键加上下滚动的滚轮,含整合中键功能的后期滚轮,Windows 95出现以后的主流滑鼠。
  • 五键滚轮滑鼠:新增第四键及第五键——主要功能为左/右方向滚动,多在生产力职业上工作。Windows操作系统称之为XBUTTON1与XBUTTON2。[4]
  • 多键滚轮滑鼠:五键以上滑鼠,为某些特定功能、游戏比赛或环境设计,可以用驱动程式进行功能编辑。

有线传送方式滑鼠

[编辑]

无线传送方式滑鼠

[编辑]
  • 红外线
    • 27MHz射频(无线电频率)
    • 40/49MHz射频(无线电频率)
    • 315/433MHz射频(无线电频率)
    • 2.4GHz射频(无线电频率)
旧式蓝牙滑鼠

功能区分

[编辑]
  • 标准滑鼠(Standard Mouse):一般标准3/ 5键滚轮滑鼠。
  • 办公滑鼠(Office Mouse):软、硬体上增加Office/ Web相关功能或是快速键的滑鼠。
  • 简报滑鼠(Presentation Mouse):为增强简报功能开发的特殊用途滑鼠,例如激光点指示幻灯片翻页等功能。
  • 游戏/电竞滑鼠(Gaming Mouse):专为游戏玩家设计,能承受较强烈的操作,解析度范围较大,特殊游戏需求软硬体设计,还有配重块放置其中。

操作

[编辑]

更多信息:点击

鼠标通常控制图形用户界面 (GUI) 中二维指针的运动。鼠标将手的前后左右运动转换为等效电子信号,进而用于移动指针。

鼠标在表面上的相对运动会应用到屏幕上指针的位置,从而指示用户操作发生的点,因此指针会复制手部运动。[5]单击或指向(当光标在区域范围内时停止移动)可以从名称列表中选择文件、程序或操作,或者(在图形界面中)通过称为“图标”和其他元素的小图像。例如,文本文件可能由纸质笔记本的图片表示,当光标指向此图标时单击可能会导致文本编辑程序在窗口中打开该文件。

不同的鼠标操作方式会导致 GUI 中发生特定的事情:[5]

  • 指向:当指针位于用户想要交互的边界内时,停止指针的移动。指向这一动作正是“指针”和“指点设备”的名称来源。在网页设计术语中,指向被称为“悬停”。这种用法已传播到网页编程和 Android 编程,现在已在许多环境中出现。
  • 单击:按下并释放按钮。
    • (左)单击:单击主按钮。
    • (左)双击:快速连续单击按钮两次与两次单独的单击算作不同的手势。
    • (左)三击:快速连续点击按钮三次与三次单击算作不同的手势。在传统导航中,三击并不常见。
    • 右键单击:单击辅助按钮。在现代应用程序中,这通常会打开上下文菜单。
    • 中键单击:单击第三按钮。在大多数情况下,这也是滚轮。
    • 单击第四个按钮。
    • 单击第五个按钮。
    • USB 标准为鼠标和其他类似设备定义了最多 65535 个不同的按钮,[6]尽管在实践中很少实现 3 个以上的按钮。
  • 拖动:按住按钮,然后移动鼠标,然后松开按钮。这通常用于通过拖放来移动或复制文件或其他对象;其他用途包括在图形应用程序中选择文本和绘图。
  • 鼠标按钮和弦​(英语或和弦点击:
    • 同时点击多个按钮。
    • 单击的同时在键盘上键入字母。
    • 同时单击并滚动鼠标滚轮。
  • 按住修饰键并单击。
  • 将指针移动很长的距离:当鼠标移动达到实际极限时,人们会抬起鼠标,将其放在工作区的另一边,然后再将其放回到工作表面上。这通常是不必要的,因为加速软件可以检测到快速移动,并且会以比慢速鼠标移动快得多的速度移动指针。
  • 多点触控:这种方式类似于笔记本电脑上的多点触控触摸板,支持多根手指的点击输入,最著名的例子就是Apple Magic Mouse

手势

[编辑]

主条目:指点设备手势

手势界面已成为现代计算不可或缺的一部分,它使用户能够以更直观、更自然的方式与设备交互。除了传统的指向和点击操作外,用户现在还可以使用手势输入来发出命令或执行特定操作。这些风格化的鼠标光标运动(称为“手势”)可以增强用户体验并简化工作流程。

为了说明手势界面的概念,我们以绘图程序为例。在这种情况下,用户可以使用手势删除画布上的形状。通过在形状上快速以“x”运动移动鼠标光标,用户可以触发删除所选形状的命令。这种基于手势的交互使用户能够快速高效地执行操作,而无需完全依赖传统输入方法。

虽然手势界面提供了更具沉浸感和互动性的用户体验,但它们也带来了挑战。其中一个主要困难在于对用户更精细的运动控制的要求。手势需要精确的动作,这对于灵活性有限的人或刚接触这种交互模式的人来说更具挑战性。

然而,尽管存在这些挑战,手势界面仍然因其能够简化复杂任务和提高效率而广受欢迎。多种手势惯例已被广泛采用,使用户更容易接受。其中一种惯例是拖放手势,它已在各种应用程序和平台上普遍使用。

拖放手势是一种基本手势惯例,可让用户无缝操作屏幕上的对象。它涉及用户执行的一系列操作:

  1. 当光标悬停在界面对象上时按下鼠标按钮。
  2. 按住按钮的同时将光标移动到其他位置。
  3. 释放鼠标按钮即可完成操作。

此手势让用户能够轻松传输或重新排列对象。例如,用户可以将代表文件的图片拖放到垃圾桶图像上,表示要删除该文件。这种直观且直观的交互方式已成为组织数字内容和简化文件管理任务的代名词。

除了拖放手势之外,手势界面范式中还出现了其他几种语义手势,成为标准惯例。这些手势有特定的用途,有助于提供更直观的用户体验。一些值得注意的语义手势包括:

  • 基于跨越的目标:此手势涉及跨越屏幕上的特定边界或阈值以触发操作或完成任务。例如,在屏幕上滑动以解锁设备或确认选择。
  • 菜单遍历:菜单遍历手势有助于浏览层级菜单或选项。用户可以执行滑动或滚动等手势来浏览不同菜单级别或激活特定命令。
  • 指向:指向手势涉及将鼠标光标定位在对象或元素上以与其交互。此基本手势使用户能够选择、点击或访问上下文菜单。
  • 鼠标悬停(指向或悬停):鼠标悬停手势是指将光标置于对象上方但不点击。此操作通常会触发视觉变化或显示有关该对象的其他信息,从而为用户提供实时反馈。

这些标准的语义手势和拖放惯例构成了手势界面的基石,让用户能够使用直观、自然的动作与数字内容进行交互。[7]

具体用途

[编辑]

20 世纪末,带有放大镜数字化仪鼠标(冰球)与AutoCAD一起用于蓝图数字化。

数字鼠标(鼠标垫)

鼠标输入的其他用途通常出现在特殊应用领域。在交互式三维图形中,鼠标的运动通常直接转化为虚拟对象或相机方向的变化。例如,在第一人称射击类游戏中(见下文),玩家通常使用鼠标来控制虚拟玩家“头部”朝向的方向:向上移动鼠标将导致玩家向上看,从而显示玩家头顶的视图。相关功能使对象的图像旋转,以便可以检查所有侧面。3D 设计和动画软件通常会模态地组合许多不同的组合,以允许对象和相机在空间中旋转和移动,并且鼠标可以检测到几个运动轴。

当鼠标有多个按钮时,软件可能会为每个按钮分配不同的功能。通常,鼠标上的主要按钮(在右手配置中最左边)将选择项目,而次要按钮(在右手配置中最右边)将调出适用于该项目的备选操作菜单。例如,在具有多个按钮的平台上,Mozilla Web 浏览器将在响应主要按钮点击时跟踪链接,将在响应次要按钮点击时调出该链接备选操作的上下文菜单,并且通常会在响应第三(中间)鼠标按钮点击时在新选项卡窗口中打开链接。

质感和操作性

[编辑]

操作滑鼠时游标的准确性,还取决于感应器(滚轮或光学感应)与握持部位之间的关系,通常是感应器稍后于握持部位为佳。设计不良的滑鼠,无法引导使用者以较舒适的方式使用滑鼠,或指标的准确性不佳,容易点错。滑鼠表面常有一层烤漆或其它物质,大多只是为了美观,有时是为了止滑。滑鼠表面上的这些物质,很容易因操作滑鼠时的频繁摩擦而脱落;因此滑鼠一开始很美观,但脱落以后就非常丑。按键方面,有的滑鼠会发出很大的喀咑声,按键较硬,不易按下;有的声音较小,按键较软。滚轮和按键类似,较松的滚轮在滚动时,会感到不灵敏。此外,有些滑鼠会加上金属块,增加滑鼠的重量,以模仿逐渐淘汰的机械滑鼠。但这却会增加了原本就可以减去的负担。滑鼠各个按键通常使用相同的元件,但各个按键的使用频率却可以有极大的差异,结果时常因为某一颗按键坏了(通常是滑鼠左键或滚轮),就要换掉整个滑鼠。滑鼠的操作性大多和使用者的使用习惯有关,滑鼠的使用本身就需要某种程度的适应;外观和质感等,也取决于使用者的偏好倾向。

平整、光滑、整洁的工作表面最适于滑鼠的操作,如以下所述的工作面可支持机械滑鼠的操作:

  • 光滑的木板表面 
  • 玻璃表面 
  • 搪瓷表面 
  • 塑料制品表面 
  • 硬纸面
  • 金属制品表面

粗糙的表面会占附一些污染物如:灰尘、石蜡、碎屑等,这些东西会影响机械滑鼠内部圆球在平面上的定位,如桌面的水滴或其他污染物、灰尘等。一个较深的凹槽会导致滑鼠发生一些奇怪的操作。

主要品牌

[编辑]

[编辑]
  1. ^ 在此之前的鼠标无法在光滑的玻璃板上正常工作。

参考资料

[编辑]
  1. ^ Gold, Virginia. ACM Turing Award Goes to Creator of First Modern Personal Computer (PDF). Association for Computing Machinery. [2011-01-11]. (原始内容存档于2010-03-11). 
  2. ^ Logitech滑鼠搭載Darkfield技術連透明玻璃都能滑. [2009-10-21]. (原始内容存档于2009-10-14). 
  3. ^ 多點觸控上身! Apple推出新滑鼠Magic Mouse. [2009-10-21]. (原始内容存档于2011-08-27). 
  4. ^ MSDN:MouseState.XButton1 Property. [2017-08-01]. (原始内容存档于2017-08-01). 
  5. ^ 5.0 5.1 How to Use Your Computer Mouse. For Dummies. [2013-12-11]. (原始内容存档于2021-10-31). 
  6. ^ https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf页面存档备份,存于互联网档案馆) (Button Page, 0x09)
  7. ^ Chatsonic. The Concept of Gestural Interfaces. Independent. 2021: 1.