纤维流形
外观
(重定向自Fibrifold)
在数学中,纤维流形(英语:Fibrifold),又称为纤维形,是一种基底空间为轨形的纤维空间,在2001年时由约翰·何顿·康威、奥拉夫·德尔加多·弗里德里希(Olaf Delgado Friedrichs)与 丹尼尔·H·赫森(Daniel H. Huson)等人提出,介绍了一个三维纤维流形的符号系统,并用这个名字来分配给219仿射空间群类型。其中184个被认为是可还原,和35个不可约的。
不可约立方空间群
[编辑]8o:2 | 4−:2 | 4o:2 | 4+:2 | 2−:2 | 2o:2 | 2+:2 | 1o:2 | |||
8o | 4− | 4o | 4+ | 2− | 2o | 2+ | 1o | |||
8o/4 | 4−/4 | 4o/4 | 4+/4 | 2−/4 | 2o/4 | 2+/4 | 1o/4 | |||
8−o | 8oo | 8+o | 4− − | 4−o | 4oo | 4+o | 4++ | 2−o | 2oo | 2+o |
族 点群 |
六八面体 *432 (m3m) |
六四面体 *332 (43m) |
螺旋形 432 (432) |
偏方复十二面体 3*2 (m3) |
四半面体 332 (23) |
---|---|---|---|---|---|
bc晶格 (I) | 8o:2 (Im3m) | 4o:2 (I43m) | 8+o (I432) | 8−o (I3) | 4oo (I23) |
nc晶格(P) | 4−:2 (Pm3m) | 2o:2 (P43m) | 4−o (P432) | 4− (Pm3) | 2o (P23) |
4+:2 (Pn3m) | 4+ (P4232) | 4+o (Pn3) | |||
fc晶格(F) | 2−:2 (Fm3m) | 1o:2 (F43m) | 2−o (F432) | 2− (Fm3) | 1o (F23) |
2+:2 (Fd3m) | 2+ (F4132) | 2+o (Fd3) | |||
其他 | 8o (Pm3n) 8o/4 (Ia3d) 8oo (Pn3n) 4− − (Fm3c) 4++ (Fd3c) |
4o (P43n) 4o/4 (I43d) 2oo (F43c) |
4+/4 (I4132) 2+/4 (P4332, P4132) |
2−/4 (Pa3) 4−/4 (Ia3) |
1o/4 (P213) 2o/4 (I213) |
下表列出索引为195-230的不可约群符号、赫曼—莫金符号符号、纤维形符号、几何符号和考克斯特表示法:
族 (轨形点群) |
空间群 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
四半面体 23 (332) |
195 | 196 | 197 | 198 | 199 | |||||
P23 | F23 | I23 | P213 | I213 | ||||||
2o | 1o | 4oo | 1o/4 | 2o/4 | ||||||
P3.3.2 | F3.3.2 | I3.3.2 | P3.3.21 | I3.3.21 | ||||||
[(4,3+,4,2+)] | [3[4]]+ | [[(4,3+,4,2+)]] | ||||||||
偏方复十二面体 43m (3*2) |
200 | 201 | 202 | 203 | 204 | 205 | 206 | |||
Pm3 | Pn3 | Fm3 | Fd3 | I3 | Pa3 | Ia3 | ||||
4− | 4+o | 2− | 2+o | 8−o | 2−/4 | 4−/4 | ||||
P43 | Pn43 | F43 | Fd43 | I43 | Pb43 | Ib43 | ||||
[4,3+,4] | [[4,3+,4]+] | [4,(31,1)+] | [[3[4]]]+ | [[4,3+,4]] | ||||||
螺旋形 432 (432) |
207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | ||
P432 | P4232 | F432 | F4132 | I432 | P4332 | P4132 | I4132 | |||
4−o | 4+ | 2−o | 2+ | 8+o | 2+/4 | 4+/4 | ||||
P4.3.2 | P42.3.2 | F4.3.2 | F41.3.2 | I4.3.2 | P43.3.2 | P41.3.2 | I41.3.2 | |||
[4,3,4]+ | [[4,3,4]+]+ | [4,31,1]+ | [[3[4]]]+ | [[4,3,4]]+ | ||||||
六四面体 43m (*332) |
215 | 216 | 217 | 218 | 219 | 220 | ||||
P43m | F43m | I43m | P43n | F43c | I43d | |||||
2o:2 | 1o:2 | 4o:2 | 4o | 2oo | 4o/4 | |||||
P33 | F33 | I33 | Pn3n3n | Fc3c3a | Id3d3d | |||||
[(4,3,4,2+)] | [3[4]] | [[(4,3,4,2+)]] | [[(4,3,4,2+)]+] | [(4,(3,4)+,2+)] | ||||||
六八面体 m3m (*432) |
221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 |
Pm3m | Pn3n | Pm3n | Pn3m | Fm3m | Fm3c | Fd3m | Fd3c | Im3m | Ia3d | |
4−:2 | 8oo | 8o | 4+:2 | 2−:2 | 4−− | 2+:2 | 4++ | 8o:2 | 8o/4 | |
P43 | Pn4n3n | P4n3n | Pn43 | F43 | F4c3a | Fd4n3 | Fd4c3a | I43 | Ib4d3d | |
[4,3,4] | [[4,3,4]+] | [4,31,1] | [4,(3,4)+] | [[3[4]]] | [[4,3,4]] |
参考文献
[编辑]- Conway, John Horton; Delgado Friedrichs, Olaf; Huson, Daniel H.; Thurston, William P., On three-dimensional space groups, Beiträge zur Algebra und Geometrie. Contributions to Algebra and Geometry, 2001, 42 (2): 475–507 [2014-04-28], ISSN 0138-4821, MR 1865535, (原始内容存档于2021-04-18)
- The Crystallographic Space Groups in Geometric Algebra (页面存档备份,存于互联网档案馆), David Hestenes and Jeremy Holt, Journal of Mathematical Physics, January 2007
- The Fibrifold Notation and Classification for 3D Space Groups[永久失效链接], Daniel H. Huson, 2008
- The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 (Paper 22) Regular and Semi Regular Polytopes I