跳转到内容

非洲猪瘟病毒

维基百科,自由的百科全书
(重定向自非洲豬瘟病毒屬
非洲猪瘟病毒
病毒颗粒的电子显微照片
病毒分类 编辑
(未分级) 病毒 Virus
域: 多变 DNA 病毒域 Varidnaviria
界: 班福病毒界 Bamfordvirae
门: 核质病毒门 Nucleocytoviricota
纲: 痘疹病毒纲 Pokkesviricetes
目: 非洲猪瘟病毒目 Asfuvirales
科: 非洲猪瘟病毒科 Asfarviridae
属: 非洲猪瘟病毒属 Asfivirus
种:
非洲猪瘟病毒 African swine fever virus

非洲猪瘟病毒(学名:African swine fever virus,缩写ASFV)是非洲猪瘟病毒科非洲猪瘟病毒属下的唯一成员,是一种双链DNA病毒[1],会引起猪类患上非洲猪瘟。根据其B646L基因3′端序列的差异,非洲猪瘟病毒被分为24个基因型,所有基因型在非洲都有分布,但只有基因Ⅰ型和Ⅱ型传播至非洲以外的地区,包括欧洲美洲亚洲等地区[2]

非洲猪瘟病毒属

[编辑]

非洲猪瘟病毒属(Asfivirus)只有一个物种,就是“非洲猪瘟病毒”,只会感染猪只,令猪只发病。本属的学名asfivirus源于这种病毒的英文名称“African swine fever”。本科病毒为DNA病毒,突变几率低于RNA病毒[3]

非洲猪瘟病毒在基因组结构和复制策略方面表现出一些与痘病毒科藻类DNA病毒科物种的相似之处,但病毒粒子结构不同于痘病毒而有所区别[4][5]

分布与传播

[编辑]

根据非洲猪瘟病毒B646L基因3′端序列差异,非洲猪瘟病毒被分为24个基因型[6]。所有基因型均在非洲境内存在[7],但只有基因Ⅰ型和Ⅱ型传播至非洲以外地区,包括欧洲、美洲和亚洲[2]。欧洲主要流行基因Ⅰ型和Ⅱ型[8][9],而亚洲则主要流行基因Ⅱ型[10][11]

自1957年起,基因Ⅰ型首次从非洲传播至葡萄牙,然后传播到西班牙法国马德拉意大利古巴马耳他巴西多米尼加共和国海地等国家,目前除了意大利撒丁岛外,基因Ⅰ型在其余国家均已被消灭[12]

2021年底,在中国部分区域的非洲猪瘟疫情中出现了基因Ⅰ型和Ⅱ型病毒的共存情况[2]。研究发现非洲猪瘟病毒在不同基因型之间发生了自然重组,从而产生了新的自然重组病毒,这些病毒形成了一个独立的进化分支,位于基因Ⅰ型分支和基因Ⅱ型分支之间,根据其B646L基因,仍被鉴定为基因Ⅰ型[13]

结构

[编辑]

非洲猪瘟病毒基因组编码超过150种蛋白质[2],还是唯一一种以昆虫为媒介的DNA病毒[14]

非洲猪瘟病毒具有独特的五层结构,包括外囊膜外衣壳、双层内膜、核心壳层和基因组,病毒颗粒约含有3万余个蛋白分子,组装成直径约为260纳米的球形颗粒[15]

基因功能

[编辑]

非洲猪瘟病毒是一种致命的线性双链DNA病毒,其基因组长度为17至19.3万碱基对,末端为共价闭合环[16]。其基因组编码多种参与DNA复制、修复、核苷酸代谢转录以及其他酶活性或宿主免疫逃逸相关的基因[17]。对非洲猪瘟病毒感染猪肺泡巨噬细胞(porcine alveolar macrophages)的研究表明,其基因表达具有时间依赖性,能够抑制宿主免疫反应并引发宿主趋化因子和代谢途径的失调[18]

以下是非洲猪瘟病毒部分关键基因的功能:

  • EP402R:该基因编码蛋白CD2v可以抑制Ⅰ型干扰素产生,影响非洲猪瘟病毒的致病力[19]
  • pH240R:是非洲猪瘟病毒的一个衣壳蛋白,由240个氨基酸组成[15]。它能够影响病毒粒子的组装[20],抑制Ⅰ型干扰素的产生,增强病毒复制[21]。也是非洲猪瘟病毒的关键毒力基因,通过抑制炎症反应影响病毒的致病力[22][23]
  • MGF505-7R:是非洲猪瘟病毒的多基因家族中的一员,能抑制炎性小体的形成和Ⅰ型干扰素的产生[24]
  • pE199L:在感染晚期表达[25],且与非洲猪瘟病毒的进入和细胞自噬有关[26][27]

参考文献

[编辑]
  1. ^ Dixon; et al. African Swine Fever Virus. Animal Viruses: Molecular Biology. Caister Academic Press. 2008 [2024-03-25]. ISBN 978-1-904455-22-6. (原始内容存档于2023-03-27). 
  2. ^ 2.0 2.1 2.2 2.3 Zhang, ZhenJiang; Sun, EnCheng; Zhu, YuanMao; Li, Fang; Bu, ZhiGao; Zhao, DongMing. Research progress on African swine fever in China. SCIENTIA SINICA Vitae. 2023-12-01. doi:10.1360/SSV-2023-0190. 
  3. ^ 联合新闻网. 非洲豬瘟不會傳染人 但疾管署提醒這件事威脅嚴重. 联合新闻网. [2019-09-09]. (原始内容存档于2019-06-09). 
  4. ^ ICTV Online (10th) Report. 
  5. ^ Index of Viruses—Asfarviridae (2006). In: ICTVdB—The Universal Virus Database, version 4. Büchen-Osmond, C (Ed), Columbia University, New York, USA. https://www.ncbi.nlm.nih.gov/ICTVdb/Ictv/fs_index.htm页面存档备份,存于互联网档案馆[页码请求]
  6. ^ Penrith, Mary‐Louise; Bastos, Armanda Duarte; Etter, Eric M. C.; Beltrán‐Alcrudo, Daniel. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio‐economic imperatives. Transboundary and Emerging Diseases. 2019-03, 66 (2): 672–686. doi:10.1111/tbed.13117. 
  7. ^ Quembo, C. J.; Jori, F.; Vosloo, W.; Heath, L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases. 2018-04, 65 (2): 420–431. doi:10.1111/tbed.12700. 
  8. ^ Costard, Solenne; Wieland, Barbara; de Glanville, William; Jori, Ferran; Rowlands, Rebecca; Vosloo, Wilna; Roger, Francois; Pfeiffer, Dirk U.; Dixon, Linda K. African swine fever: how can global spread be prevented?. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009-09-27, 364 (1530): 2683–2696. doi:10.1098/rstb.2009.0098. 
  9. ^ Cwynar, Przemyslaw; Stojkov, Jane; Wlazlak, Klaudia. African Swine Fever Status in Europe. Viruses. 2019-03-30, 11 (4): 310. doi:10.3390/v11040310. 
  10. ^ Zhao, Dongming; Liu, Renqiang; Zhang, Xianfeng; Li, Fang; Wang, Jingfei; Zhang, Jiwen; Liu, Xing; Wang, Lulu; Zhang, Jiaoer; Wu, Xinzhou; Guan, Yuntao; Chen, Weiye; Wang, Xijun; He, Xijun; Bu, Zhigao. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes & Infections. 2019-01, 8 (1): 438–447. doi:10.1080/22221751.2019.1590128. 
  11. ^ Gao, Lu; Sun, Xiangdong; Yang, Honglin; Xu, Quangang; Li, Juan; Kang, Jingli; Liu, Ping; Zhang, Yi; Wang, Youming; Huang, Baoxu. Epidemic situation and control measures of African Swine Fever Outbreaks in China 2018–2020. Transboundary and Emerging Diseases. 2021-09, 68 (5): 2676–2686. doi:10.1111/tbed.13968. 
  12. ^ Desmecht, Daniel; Gerbier, Guillaume; Gortázar Schmidt, Christian; Grigaliuniene, Vilija; Helyes, Georgina; Kantere, Maria; Korytarova, Daniela; Linden, Annick; Miteva, Aleksandra; Neghirla, Ioana; Olsevskis, Edvins; Ostojic, Sasa; Petit, Tom; Staubach, Christoph; Thulke, Hans‐Hermann; Viltrop, Arvo; Richard, Wallo; Wozniakowski, Grzegorz; Cortiñas, José Abrahantes; Broglia, Alessandro; Dhollander, Sofie; Lima, Eliana; Papanikolaou, Alexandra; Van der Stede, Yves; Ståhl, Karl. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA Journal. 2021-05, 19 (5). doi:10.2903/j.efsa.2021.6572. 
  13. ^ Zhao, Dongming; Sun, Encheng; Huang, Lianyu; Ding, Leilei; Zhu, Yuanmao; Zhang, Jiwen; Shen, Dongdong; Zhang, Xianfeng; Zhang, Zhenjiang; Ren, Tao; Wang, Wan; Li, Fang; He, Xijun; Bu, Zhigao. Highly lethal genotype I and II recombinant African swine fever viruses detected in pigs. Nature Communications. 2023-05-29, 14 (1). doi:10.1038/s41467-023-38868-w. 
  14. ^ Tabarés, E.; Marcotegui, M. A.; Fernández, M.; Sánchez-Botija, C. Proteins specified by African swine fever virus: I. Analysis of viral structural proteins and antigenic properties. Archives of Virology. 1980-06, 66 (2): 107–117. doi:10.1007/BF01314979. 
  15. ^ 15.0 15.1 Wang, Nan; Zhao, Dongming; Wang, Jialing; Zhang, Yangling; Wang, Ming; Gao, Yan; Li, Fang; Wang, Jingfei; Bu, Zhigao; Rao, Zihe; Wang, Xiangxi. Architecture of African swine fever virus and implications for viral assembly. Science. 2019-11, 366 (6465): 640–644. doi:10.1126/science.aaz1439. 
  16. ^ Malogolovkin, Alexander; Kolbasov, Denis. Genetic and antigenic diversity of African swine fever virus. Virus Research. 2019-10, 271: 197673. doi:10.1016/j.virusres.2019.197673. 
  17. ^ Dixon, Linda K.; Chapman, David A.G.; Netherton, Christopher L.; Upton, Chris. African swine fever virus replication and genomics. Virus Research. 2013-04, 173 (1): 3–14. doi:10.1016/j.virusres.2012.10.020. 
  18. ^ Ju, Xiaohui; Li, Fang; Li, Jingrui; Wu, Chunyan; Xiang, Guangtao; Zhao, Xiaomin; Nan, Yuchen; Zhao, Dongming; Ding, Qiang. Genome-wide transcriptomic analysis of highly virulent African swine fever virus infection reveals complex and unique virus host interaction. Veterinary Microbiology. 2021-10, 261: 109211. doi:10.1016/j.vetmic.2021.109211. 
  19. ^ Huang, Li; Chen, Weiye; Liu, Hongyang; Xue, Mengdi; Dong, Siqi; Liu, Xiaohong; Feng, Chunying; Cao, Shinuo; Ye, Guangqiang; Zhou, Qiongqiong; Zhang, Zhaoxia; Zheng, Jun; Li, Jiangnan; Zhao, Dongming; Wang, Zilong; Sun, Encheng; Chen, Hefeng; Zhang, Shuai; Wang, Xue; Zhang, Xianfeng; He, Xijun; Guan, Yuntao; Bu, Zhigao; Weng, Changjiang. African Swine Fever Virus HLJ/18 CD2v Suppresses Type I IFN Production and IFN-Stimulated Genes Expression through Negatively Regulating cGMP-AMP Synthase–STING and IFN Signaling Pathways. The Journal of Immunology. 2023-05-01, 210 (9): 1338–1350. doi:10.4049/jimmunol.2200813. 
  20. ^ Zhou, P; Li, LF; Zhang, K; Wang, B; Tang, L; Li, M; Wang, T; Sun, Y; Li, S; Qiu, HJ. Deletion of the H240R Gene of African Swine Fever Virus Decreases Infectious Progeny Virus Production Due to Aberrant Virion Morphogenesis and Enhances Inflammatory Cytokine Expression in Porcine Macrophages.. Journal of virology. 2022-02-09, 96 (3): e0166721. PMID 34787458. doi:10.1128/JVI.01667-21. 
  21. ^ Ye, G; Liu, H; Liu, X; Chen, W; Li, J; Zhao, D; Wang, G; Feng, C; Zhang, Z; Zhou, Q; Zheng, J; Bu, Z; Weng, C; Huang, L. African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon through Disrupting the Oligomerization of STING.. Journal of virology. 2023-09-28, 97 (9): e0057723. PMID 37199611. doi:10.1128/jvi.00577-23. 
  22. ^ Zhou, P; Dai, J; Zhang, K; Wang, T; Li, LF; Luo, Y; Sun, Y; Qiu, HJ; Li, S. The H240R Protein of African Swine Fever Virus Inhibits Interleukin 1β Production by Inhibiting NEMO Expression and NLRP3 Oligomerization.. Journal of virology. 2022-11-23, 96 (22): e0095422. PMID 36326277. doi:10.1128/jvi.00954-22. 
  23. ^ Huang, Li; Liu, Hongyang; Ye, Guangqiang; Liu, Xiaohong; Chen, Weiye; Wang, Zilong; Zhao, Dongming; Zhang, Zhaoxia; Feng, Chunying; Hu, Liang; Yu, Huibin; Zhou, Shijun; Zhang, Xianfeng; He, Xijun; Zheng, Jun; Bu, Zhigao; Li, Jiangnan; Weng, Changjiang. Deletion of African Swine Fever Virus (ASFV) H240R Gene Attenuates the Virulence of ASFV by Enhancing NLRP3-Mediated Inflammatory Responses. Journal of Virology. 2023-02-28, 97 (2). doi:10.1128/jvi.01227-22. 
  24. ^ Li, J; Song, J; Kang, L; Huang, L; Zhou, S; Hu, L; Zheng, J; Li, C; Zhang, X; He, X; Zhao, D; Bu, Z; Weng, C. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1β and type I IFN production.. PLoS pathogens. 2021-07, 17 (7): e1009733. PMID 34310655. doi:10.1371/journal.ppat.1009733. 
  25. ^ Sun, H.; Jenson, J.; Dixon, L. K.; Parkhouse, R. M. E. Characterization of the African swine fever virion protein j18L. Journal of General Virology. 1996-05-01, 77 (5): 941–946. doi:10.1099/0022-1317-77-5-941. 
  26. ^ Chen, Sheng; Zhang, Xinheng; Nie, Yu; Li, Hongxin; Chen, Weiguo; Lin, Wencheng; Chen, Feng; Xie, Qingmei. African Swine Fever Virus Protein E199L Promotes Cell Autophagy through the Interaction of PYCR2. Virologica Sinica. 2021-04, 36 (2): 196–206. doi:10.1007/s12250-021-00375-x. 
  27. ^ Matamoros, T; Alejo, A; Rodríguez, JM; Hernáez, B; Guerra, M; Fraile-Ramos, A; Andrés, G. African Swine Fever Virus Protein pE199L Mediates Virus Entry by Enabling Membrane Fusion and Core Penetration.. mBio. 2020-08-11, 11 (4). PMID 32788374. doi:10.1128/mBio.00789-20. 

外部链接

[编辑]