跳转到内容

量子生物学

维基百科,自由的百科全书

量子生物学是利用量子理论来研究生命科学[1]的一门学科。该学科包含利用量子力学研究生物过程分子动态结构。利用量子生物学研究量子水平的分子动态结构和能量转移,如果所得结果与宏观的生物学现象相吻合且很难用其他学科的研究重复,则这一研究结果较为可信[2]

量子生物化学光合过程的量子研究已得到了可核查的重要的结果。尤其是光合作用中,对于俘获光子后发生的分步的、对质子的量子式释放,利用量子生物学的理论,已获得显著的研究进展(相关理论涉及到较为复杂的光系统II)。此外,实验和理论的发现都支持酶促反应中包含量子穿隧机制。将能量转化为化学能(可用于化学转化)的生物学过程在实质上都是量子力学过程。这些过程包含化学反应光俘获电子激发态的形成、激发能的转移和化学过程(如光合作用及细胞呼吸)中电子及质子(离子)的转移[3]。量子生物学以量子力学效应为根据,借助数学计算,对生物学相互作用进行模拟[4]奥地利出生的量子物理学家数理生物学家埃尔温·薛定谔早在1946年就提出了用量子理论研究遗传系统的需求,理论生物学罗伯特·罗森在1961年接着给出了一份详细、正式的研究量子遗传学的办法。在这方面的一个仍未解决的存在争议的问题是:量子效应生物系统中的非平凡/通用角色(即不受限于分子性质)究竟是什么?[5][6][7]然而,新近关于转录的研究与转录酶对于相干态双链DNA量子信息处理是一致的[8][9]

研究内容

[编辑]

相关量子过程被研究的生物学现象主要包括对辐射的频率特异性吸收(出现在光合作用[10]视觉系统等内)[11]化学能机械能的转化[12]动物磁感应[13]及许多细胞过程中的布朗马达[14]。该领域还在积极地研究磁场鸟类导航的量子分析[15]并可能为许多生物体昼夜节律生理节律)的研究提供线索[16]

最近的研究已经确定了在光合作用的光收获阶段,不同的色素的激发态之间的量子相干性纠缠[17][18]尽管这一阶段的光合作用效率非常高,但是目前仍不清楚这些量子效应究竟如何,或者是否是生物学上相关的。[19]

参见

[编辑]

参考资料

[编辑]
  • W.G. Cooper, "Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states." BioSystems, 97, pp. 73–89, 2009.
  • W.G. Cooper, "Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited bacteriophage T4." Biochem. Genet. 47, 892, 2009; doi:10.1007/s10528-009-9293-8.
  • F. H. Thaheld, "An interdisciplinary approach to certain fundamental issues in the fields of physics and biology: towards a unified theory" BioSystems, 80, pp. 41–56, 2005.
  • J. Gilmore and R. H. McKenzie, "Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent," Journal of Physics: Condensed Matter, 17(10), pp. 1735–1746, 2005.
  • S. Hameroff and J. Tuszynski, "Quantum states in proteins and protein assemblies: the essence of life?" Proc. SPIE Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems II, Eds. D. Abbott, S.M. Bezrukov, A. Der, and A. Sánchez, 5467, pp. 27–41, Canary Islands, 2004. p
  • P.C.W. Davies, "Does quantum mechanics play a non-trivial role in life?" BioSystems, 78, pp. 69–79, 2004.
  • A. F. Rocha, E. Massad and F. A. B. Coutinho, "Can the human brain do quantum computing?" Medical Hypotheses, 63, pp. 895–899, 2004.
  • A. U. Igamberdiev, "Quantum computation, non-demolition measurements, and reflective control in living systems," BioSystems, 77, pp. 47–56, 2004.
  • S. R. Hameroff, "A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation," BioSystems, 77, pp. 119–136, 2004.
  • Z.-X. Liang and J. P. Klinman, "Structural bases of hydrogen tunneling in enzymes: progress and puzzles," Current Opinion in Structural Biology, 14, pp. 468–655, 2004.
  • P.C.W. Davies, "Emergent biological principles and the computational properties of the universe," Complexity, 10(2), pp. 11–15, 2004.

Cambridge, 1946.

  • C. W. Smith, "Quanta and coherence effects in water and living systems," The Journal of Alternative and Complementary Medicine, 10(1), pp. 69–78, 2004.
  • L. Hackermuller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, and M. Arndt, "Wave nature of biomolecules and fluorofullerenes," Physical Review Letters, 91(9), 090408, 2003.
  • O. Nariz, M. Arndt, and A. Zeilinger, "Quantum interference experiments with large molecules," American Journal of Physics, 71(4), pp. 319–325, 2003.
  • S. Axelsson, "Perspectives on handedness, life and physics," Medical Hypotheses, 61(2), pp. 267–274, 2003.
  • S. R. Hameroff, A. Nip, M. Porter, and J. Tuszynski, "Conduction pathways in microtubules, biological quantum computation, and consciousness," BioSystems, 64, pp. 146–168, 2002.
  • V. Helms, "Electronic excitations of biomolecules studied by quantum chemistry," Current Opinion in Structural Biology, 12, pp. 169–175, 2002.
  • S. M. Hitchcock, "Photosynthetic quantum computers," arXiv:quant-ph/0108087, 2001.
  • V. Gogonea, D. Suarez, A. van der Vaart and K. M. Merz, "New developments in applying quantum mechanics to proteins," Current Opinion in Structural Biology, 11, pp. 217–223, 2001.
  • M. Kameyama, "Quantum cellular biology: a curious example of a cat," Medical Hypotheses, 57(3), pp. 358–360, 2001.
  • M. Tegmark, "Why the brain is probably not a quantum computer," Information Sciences, 128, pp. 155–179, 2000.
  • K. Matsuno, "Is there a biology of quantum information? ," BioSystems, 55, pp. 39–46, 2000.
  • M. Tegmark, "The importance of quantum decoherence in brain processes," Physical Review E, 61(4), pp. 4194–4206, 2000.
  • H. S. Green, "Measurement and the observer," Chapter 8 in Information Theory and Quantum Physics: Physical Foundations for Understanding the Conscious Process, Springer, pp. 172–209, 2000.
  • E. Bieberich, "Probing quantum coherence in a biological system by means of DNA amplification," BioSystems, 57, pp. 109–124, 2000.
  • A. Kohen and J. Klinman, "Hydrogen tunneling in biology," Chemistry and Biology, 6, pp. R191-R198, 1999.
  • W. J. Meggs, "Biological homing: hypothesis for a quantum effect that leads to the existence of life," Medical Hypotheses, 51, pp. 503–506, 1998.
  • M. Tegmark, "Does the universe in fact contain almost no information?" Foundations of Physics Letters, 9(1), pp. 25–42, 1996.
  • S. Hameroff and R. Penrose, "Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness," Mathematics and Computers in Simulation, 40, pp. 453–480, 1996.
  • D. V. Nanopoulos, "Theory of brain function, quantum mechanics and superstrings," arXiv: hep-ph/950374, 1995.


注释

[编辑]
  1. ^ Tae-Chang Kim, Eric Chaisson. Science, Education and Future Generations. Taylor & Francis Ltd. 1999: 26. ISBN 978-9057005381. 
  2. ^ Ian Brown, Zengliang Yu, Thiraphat Vilaithong. Introduction to Ion Beam Biotechnology. Springer-Verlag New York Inc. 2005: 97. ISBN 978-0387255316. 
  3. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/页面存档备份,存于互联网档案馆
  4. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm页面存档备份,存于互联网档案馆) Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  5. ^ H.M. Wiseman, J. Eisert Nontrivial quantum effects in biology: A skeptical physicists' view arXiv:0705.1232v2 [physics.gen-ph]
  6. ^ Davies PC.Does quantum mechanics play a non-trivial role in life? Biosystems. 2004 Dec;78(1-3):69-79.
  7. ^ Ogryzko VV. Erwin Schrödinger, Francis Crick and epigenetic stability.Biol Direct. 2008 Apr 17;3:15.[1]页面存档备份,存于互联网档案馆[2]页面存档备份,存于互联网档案馆
  8. ^ Cooper WG.Evidence for transcriptase quantum processing implies entanglement and decoherence of superposition proton states. BioSystems. 2009 Aug; 97:73-89.doi:10.1016/j.biosystems.2009.04.010
  9. ^ Cooper WG. Necessity of quantum coherence to account for the spectrum of time-dependent mutations exhibited by bacteriophage T4. Biochem. Genet. 2009 Oct; doi:10.1007/s10528-009-9293-8
  10. ^ Quantum Secrets of Photosynthesis Revealed. [2010-07-19]. (原始内容存档于2017-10-22). 
  11. ^ Garab, G. Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers. 1999. ISBN 978-0792355472. 
  12. ^ Levine, Raphael D. Molecular Reaction Dynamics. Cambridge University Press. 2005: 16–18. ISBN 978-0521842761. 
  13. ^ Binhi, Vladimir N. Magnetobiology: Underlying Physical Problems. Academic Press. 2002: 14–16. ISBN 978-0121000714. 
  14. ^ Harald Krug, Harald Brune, Gunter Schmid, Ulrich Simon, Viola Vogel, Daniel Wyrwa, Holger Ernst, Armin Grunwald, Werner Grunwald, Heinrich Hofmann. Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. 2006: 197–240. ISBN 978-3540328193. 
  15. ^ http://rodgers.org.uk/research/页面存档备份,存于互联网档案馆) Chris Rodgers, The Spin Chemistry of Bird Navigation 2005
  16. ^ http://www.sciencedaily.com/releases/2007/08/070827174303.htm页面存档备份,存于互联网档案馆Math Model For Circadian Rhythm Created, ScienceDaily, August 30, 2007
  17. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics. 2010, 6 (6): 462–467. Bibcode:2010NatPh...6..462S. arXiv:0905.3787可免费查阅. doi:10.1038/nphys1652. 
  18. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC; et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.. Nature. 2007, 446 (7137): 782–6 [2014-02-23]. Bibcode:2007Natur.446..782E. PMID 17429397. doi:10.1038/nature05678. (原始内容存档于2017-06-17). 
  19. ^ Scholes GS. Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?. Journal of Physical Chemistry Letters. 2010, 1: 2–8. doi:10.1021/jz900062f. 

扩展阅读

[编辑]
  • Atomistic approaches in modern biology : from quantum chemistry to molecular simulations by Markus Reiher; L Bertini. Berlin ; New York : Springer, 2007. ISBN 978-3-540-38082-5
  • Molecular structure and dynamics in biology. by Roman Osman; Guiliano Alagona; Caterina Ghio; International Society for Quantum Biology and Pharmacology.Wiley, 1999. OCLC: 82140679
  • Theoretical chemistry in biology : from molecular structure to functional mechanisms. by Peter Kollman; Harel Weinstein John Wiley and Sons, 1998. OCLC: 80429626

外部链接

[编辑]