病原溢出
外观
病原溢出(pathogen spillover)是指病原获得感染新宿主的能力,从原本宿主(自然宿主)跨越到另一种宿主的现象[1] 。感染人类的病毒有超过三分之二为人畜共通传染病[2],即由其他动物溢出至人类。大多数人类病毒最早都可能是由其他动物溢出而来[3]。多数病毒溢出事件为有限的偶发感染,不会发生进一步人传人的感染,如狂犬病毒经动物咬伤的伤口感染人类,不过有些病毒溢出则会在人群中扩散,造成新兴传染病,如埃博拉病毒、SARS-CoV、MERS-CoV与SARS-CoV-2等。其他生物间也常有病原溢出事件发生,感染野生动物的病原可能溢出至家禽与家畜,如鸭冠状病毒2714自野生水鸟溢出至家鸡[4]、布鲁氏菌病自非洲水牛溢出至畜养的牛只、猪急性腹泻综合征冠状病毒(SADS-CoV)自蝙蝠溢出至猪只等[5],也有感染野生杂草的病原溢出至农作物的例子[1]。
近年来动物病原溢出至人类的事件频频增加,可能原因有农地扩张、森林砍伐、野生动物的栖地破坏等[6]。病原溢出至人类的过程受原始宿主分布与密度、病原流行率、散播强度与存活率、与人类接触情形和人类免疫反应等因素影响,溢出过程的瓶颈步骤因病原不同而异[7]。
种内病原溢出
[编辑]病原溢出也可发生在不同种群的同种生物之间。人工饲养的熊蜂病原包括熊蜂短膜虫、熊蜂孢子虫、熊蜂微孢子虫、东方蜜蜂微孢子虫和畸翅病毒等[8][9],皆可能随着熊蜂逃逸至野外而溢出至野生种群[10][11],有研究发现一间人工饲养熊蜂的温室附近有近半野生熊蜂被熊蜂短膜虫感染[12][13],此比例随与温室的距离增加而下降,显示温室中饲养的熊蜂可能是感染源,在北美洲、日本与英国皆有类似病原溢出至野生蜜蜂种群的纪录[14]。
参见
[编辑]参考文献
[编辑]- ^ 1.0 1.1 Power, AG; Mitchell, CE. Pathogen spillover in disease epidemics. Am Nat. Nov 2004, 164 (Suppl 5): S79–89. PMID 15540144. doi:10.1086/424610.
- ^ Woolhouse M, Scott F, Hudson Z, Howey R, Chase-Topping M. Human viruses: discovery and emergence.. Philos Trans R Soc Lond B Biol Sci. 2012, 367 (1604): 2864–71. PMC 3427559 . PMID 22966141. doi:10.1098/rstb.2011.0354.
- ^ Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases.. Nature. 2007, 447 (7142): 279–83. PMC 7095142 . PMID 17507975. doi:10.1038/nature05775.
- ^ Pauly, Maude; Snoeck, Chantal J.; Phoutana, Vannaphone; Keosengthong, Amphone; Sausy, Aurélie; Khenkha, Latdavone; Nouanthong, Phonethipsavanh; Samountry, Bounthome; et al. Cross-species transmission of poultry pathogens in backyard farms: ducks as carriers of chicken viruses. Avian Pathology. 2019, 48 (6): 503–511. ISSN 0307-9457. doi:10.1080/03079457.2019.1628919.
- ^ Wang LF, Anderson DE. Viruses in bats and potential spillover to animals and humans.. Curr Opin Virol. 2019, 34: 79–89. PMC 7102861 . PMID 30665189. doi:10.1016/j.coviro.2018.12.007.
- ^ Berger, Kevin. The Man Who Saw the Pandemic Coming. Nautilus. 2020-03-12 [2020-03-16]. (原始内容存档于2020-03-15).
- ^ Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL; et al. Pathways to zoonotic spillover.. Nat Rev Microbiol. 2017, 15 (8): 502–510. PMC 5791534 . PMID 28555073. doi:10.1038/nrmicro.2017.45.
- ^ Graystock, P; Yates, K; Evison, SEF; Darvill, B; Goulson, D; Hughes, WOH. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. Journal of Applied Ecology. 2013, 50 (5): 1207–15. doi:10.1111/1365-2664.12134.
- ^ Sachman-Ruiz, Bernardo; Narváez-Padilla, Verónica; Reynaud, Enrique. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biological Invasions. 2015-03-10, 17 (7): 2043–53. ISSN 1387-3547. doi:10.1007/s10530-015-0859-6.
- ^ Durrer, Stephan; Schmid-Hempel, Paul. Shared Use of Flowers Leads to Horizontal Pathogen Transmission. Proceedings of the Royal Society of London B: Biological Sciences. 1994-12-22, 258 (1353): 299–302. Bibcode:1994RSPSB.258..299D. ISSN 0962-8452. doi:10.1098/rspb.1994.0176.
- ^ Graystock, Peter; Goulson, Dave; Hughes, William O. H. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B. 2015-08-22, 282 (1813): 20151371. ISSN 0962-8452. PMC 4632632 . PMID 26246556. doi:10.1098/rspb.2015.1371.
- ^ Otterstatter, MC; Thomson, JD. Does Pathogen Spillover from Commercially Reared Bumble Bees Threaten Wild Pollinators?. PLOS ONE. 2008, 3 (7): e2771. Bibcode:2008PLoSO...3.2771O. PMC 2464710 . PMID 18648661. doi:10.1371/journal.pone.0002771.
- ^ Graystock, Peter; Goulson, Dave; Hughes, William O.H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ. 2014, 2: e522. PMC 4137657 . PMID 25165632. doi:10.7717/peerj.522.
- ^ Graystock, Peter; Blane, Edward J.; McFrederick, Quinn S.; Goulson, Dave; Hughes, William O. H. Do managed bees drive parasite spread and emergence in wild bees?. International Journal for Parasitology: Parasites and Wildlife. 2016, 5 (1): 64–75. PMC 5439461 . PMID 28560161. doi:10.1016/j.ijppaw.2015.10.001.