跳转到内容
Gottlieb Polynomials
戈特利布多项式是一个以超几何函数定义的正交多项式

前面几条戈特利布多项式为:





- Gottlieb, M. J., Concerning some polynomials orthogonal on a finite or enumerable set of points., American Journal of Mathematics, 1938, 60: 453–458, ISSN 0002-9327, JFM 64.0329.01, doi:10.2307/2371307
- Rainville, Earl D., Special functions, New York: The Macmillan Co., 1960, MR 0107725