循环数
外观
循环数(英语:cyclic number),是一类特殊的整数,其包含的各个数字的循环排列恰为该数的连续倍数 ; 一个n位的循环数的性质是它乘以1至n都是各个数字的循环排列 , 乘以(n+1)会出现纯位数 , 纯位数每个位都是9。例如,最知名的循环数是142857:
- 142857 × 1 = 142857
- 142857 × 2 = 285714
- 142857 × 3 = 428571
- 142857 × 4 = 571428
- 142857 × 5 = 714285
- 142857 × 6 = 857142
乘以7出现纯位数
- 142857 × 7 = 999999
另一例子为(0)588235294117647
- 588235294117647 × 1 = 588235294117647
- 588235294117647 × 2 = 1176470588235294
- 588235294117647 × 3 = 1764705882352941
- 588235294117647 × 4 = 2352941176470588
- 588235294117647 × 5 = 2941176470588235
- 588235294117647 × 6 = 3529411764705882
- 588235294117647 × 7 = 4117647058823529
- 588235294117647 × 8 = 4705882352941176
- 588235294117647 × 9 = 5294117647058823
- 588235294117647 × 10 = 5882352941176470
- 588235294117647 × 11 = 6470588235294117
- 588235294117647 × 12 = 7058823529411764
- 588235294117647 × 13 = 7647058823529411
- 588235294117647 × 14 = 8235294117647058
- 588235294117647 × 15 = 8823529411764705
- 588235294117647 × 16 = 9411764705882352
乘以17出现纯位数
- 588235294117647 * 17 = 9999999999999999
长度为L的循环数可以表示为单位分数小数表示形式的循环部分。反过来,如果(其中p为质数)的循环长度为p-1(这样的质数p称为全循环质数),那么其循环部分表示的就是一个循环数。[1]例如:
其不同倍数的循环部分则是该循环数的循环排列:
参见
[编辑]参考文献
[编辑]- ^ Weisstein, Eric W. (编). Cyclic Number. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2015-02-09]. (原始内容存档于2019-06-30) (英语).
这是一篇关于数学的小作品。您可以通过编辑或修订扩充其内容。 |