Fermi-Dirac Integral animation
Fermi-Dirac Integral complex minus
Fermi-Dirac Integral complex
完全费米—狄拉克积分,以恩里科·费米和保罗·狄拉克各取一字命名,已知指数j定义如下
![{\displaystyle F_{j}(x)={\frac {1}{\Gamma (j+1)}}\int _{0}^{\infty }{\frac {t^{j}}{e^{t-x}+1}}\,dt.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc09c96b34fa24c30b5a858cbd9058a7f224d0a)
等于
![{\displaystyle -\operatorname {Li} _{j+1}(-e^{x}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8057311753b680951e5c63f613ff70d1946885)
此处
为多重对数函数。
对j = 0,函数的封闭形式存在:
![{\displaystyle F_{0}(x)=\ln(1+\exp(x)).\,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4659e78bd2c5971a7c0a025335e41e123c7841c4)
当
,与多重对数函数的值比较:
![{\displaystyle \operatorname {Li} _{1}(z)=-\log(1-z).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e39102b90a6ef4a31991071278239f05d2bd3348)
Table of Integrals, Series, and Products, I.S. Gradshteyn, I.M. Ryzhik, 5th edition, p. 370, formula № 3.411.3.