跳转到内容

圆形函数

维基百科,自由的百科全书

拓扑学微积分中,圆形函数(round function)是流形M上的标量函数,其临界点形成连通分量,每个都同胚,因此也叫临界环。圆形函数是莫尔斯–博特函数的特例。

黑色圆圈就是其中一个临界环。

例子

[编辑]

例如,令M环面

则知映射

是几乎所有M的参数化。现在,通过射影可得限制条件

是临界集定义为

的函数,当且仅当

这两个值给出临界集

代表环面M上的两个极值圆。 注意此函数的黑塞矩阵

这清楚地表明,在标记圆处、使临界点退化;也就是说,这表明临界点不是孤点。

圆复杂度

[编辑]

模仿LS范畴论,可以定义流形上是否存在圆形函数和/或临界环的最小数目的圆复杂度

参考文献

[编辑]