凡得瓦登猜想
外观
在线性代数中,Van der Waerden猜想是一个关于积和式的命题,其具体内容如下:
注意到该下界在所有元素均为时成立。该猜想由Bartel Leendert van der Waerden在1926年提出[1],在1980年由B. Gyires[2],1981年由G. P. Egorychev[3]和D. I. Falikman[4]独立证明,其中Egorychev的证明用到了Alexandrov–Fenchel不等式。[5]由于这项工作,Egorychev和Falikman赢得了1982年的Fulkerson奖。[6]
参考
[编辑]- ^ van der Waerden, B. L., Aufgabe 45, Jber. Deutsch. Math.-Verein., 1926, 35: 117.
- ^ Gyires, B., The common source of several inequalities concerning doubly stochastic matrices, Publicationes Mathematicae Institutum Mathematicum Universitatis Debreceniensis, 1980, 27 (3-4): 291–304, MR 0604006.
- ^ Egoryčev, G. P., Reshenie problemy van-der-Vardena dlya permanentov, Krasnoyarsk: Akad. Nauk SSSR Sibirsk. Otdel. Inst. Fiz.: 12, 1980, MR 0602332 (俄语). Egorychev, G. P., Proof of the van der Waerden conjecture for permanents, Akademiya Nauk SSSR, 1981, 22 (6): 65–71, 225, MR 0638007 (俄语). Egorychev, G. P., The solution of van der Waerden's problem for permanents, Advances in Mathematics, 1981, 42 (3): 299–305, MR 0642395, doi:10.1016/0001-8708(81)90044-X.
- ^ Falikman, D. I., Proof of the van der Waerden conjecture on the permanent of a doubly stochastic matrix, Akademiya Nauk Soyuza SSR, 1981, 29 (6): 931–938, 957, MR 0625097 (俄语).
- ^ Brualdi (2006) p.487
- ^ Fulkerson Prize (页面存档备份,存于互联网档案馆), Mathematical Optimization Society, retrieved 2012-08-19.