跳转到内容

两栖动物

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自两栖类

两栖纲
化石时期:泥盆纪晚期至今,370–0 Ma
左上:叶绿树蛙;右上:西蒙螈
左下:绿红东美螈;右下:墨西哥蚓螈
科学分类 编辑
界: 动物界 Animalia
门: 脊索动物门 Chordata
演化支 希望螈类 Elpistostegalia
演化支 坚头类 Stegocephalia
总纲: 四足总纲 Tetrapoda
演化支 蛙形类 Batrachomorpha
纲: 两栖纲 Amphibia
Gray, 1825[1]
下级级分类

两栖动物是一种变温卵生、营水陆两栖的肉食性四足类脊椎动物(部分类群四足退化),在生物分类学上构成名为两栖纲学名Amphibia)的分类单元。特征为表皮裸露,无鳞甲、毛羽等覆盖,皮肤通过分泌粘液以保持身体湿润;四足有趾而无爪。所产的卵缺乏卵壳保湿,因此需产在水中。幼体出生后必须在水中生活,用呼吸,成年后可在陆地上生活,用和皮肤呼吸,主要捕食小型无脊椎动物

演化

[编辑]

两栖动物相信起源于泥盆纪晚期,于石炭纪爆发[2][3][4]:87。传统的分类学观点中,将两栖动物化石分为三个亚纲,分别是[5]迷齿亚纲labyrinthodontia[2]:87壳椎亚纲滑体亚纲。 近年认为壳椎亚纲是与羊膜动物有关或是其的祖先[6],即它们是已灭绝(但不包括羊膜动物)的多系分类[7],或是一个非常接近羊膜动物祖先(非两栖类)的单系群[8]

两栖动物由泥盆纪晚期的肉鳍鱼类演化而来,是四足类动物从水栖发展到陆栖的中间过渡类型,进化程度介于高等鱼类和羊膜动物之间。早期两栖动物在石炭纪繁盛一时,分化出许多大型种类,为淡水和陆地上的顶级捕食者,但由于食性较为单一,且对各种水体的适应性不及鱼类,陆地生存能力又逊于后起的羊膜动物,自中生代以来两栖动物逐渐衰落,至今大部分种类都已灭绝。现存的两栖动物均属于滑体亚纲,多数体型较小,包括青蛙蟾蜍(蛤蟆)、蝾螈大鲵(娃娃鱼)等,共计约8000种,已描述7000余种,在脊椎动物中仍属大类,物种多样性仅次于辐鳍鱼类和羊膜动物。其在交配后,能产卵400余枚,数量惊人。

传统的分类体系中,除羊膜动物外的所有四足类动物都归为两栖纲,在此定义下部分两栖动物为羊膜动物的祖先。然而,各类羊膜动物(合弓纲蜥形纲)独立于两栖纲之外,使得传统的两栖纲成为并系群(即缺少部分演化支,未囊括所有后代),因此现行分类缩小了两栖纲的涵盖范围,仅限于四足总纲蛙形类英语Batrachomorpha的一支,与羊膜动物所属的爬行形类分为两支,互不相关,切断了传统分类中两栖动物与羊膜动物的演化关系,这一新的定义使部分早期四足类动物不再隶属两栖动物。

下级分类

[编辑]

(注:† 表示已灭绝)

史前类群壳椎亚纲(Lepospondyli)也曾被归类于此,但实际上这一演化支更接近羊膜动物,属于爬行形类

生理构造

[编辑]

循环系统

[编辑]

心脏:两心房,一心室

消化系统

[编辑]
解剖了的青蛙模型
解剖了的青蛙:1. 右心房,2. 肺,3. 主动脉,4. 大量的卵子 ,5. 结肠,6. 左心房,7. 心室,8. 胃,9. 肝,10. 胆囊,11. 小肠,12泄殖腔

大部分两栖动物都能通过弹出口腔内可伸展的舌头去捕捉猎物,其带有黏性的舌尖能很好的黏着猎物并将其带回口中,而无须动用颚骨半分。一些物种会以惯性去协助它们吞咽,它们会反复将头部快速伸前以制造推力,从而令惯性将猎物吞进食管中。由于大部分的两栖动物都不会咀嚼猎物,而是整支的吞进食管中,因此它们多有一个特别大的胃部,呕吐的时候则会直接将胃吐出。不长的食管内部有纤毛协助将食物推往胃中,口腔内及咽喉中的腺体亦会分泌黏液去平滑食管。胃部则会通过分泌甲壳质酶(Chitinase)去消化节肢动物甲壳质外壳。[9]

生长繁殖

[编辑]

两栖动物繁殖时候需要水,因为它们的要生在水里。刚从卵里出来的幼体形态似鱼(如蝌蚪)用鳃呼吸,有侧线,依靠尾鳍游泳。然后经变态才能上陆生活。一般来说,它们最后会离开水,但是并非所有两栖动物都是这样。它们成长过程中最明显的是长出四条来在陆地上行走,另外还有:

食性

[编辑]

两栖动物都是食肉的,一般以蠕虫蜘蛛昆虫为食。较大一点的两栖动物还以小的爬行动物哺乳动物甚至螃蟹为食物。

防卫机制

[编辑]

两栖动物拥有柔软的身体及薄的皮肤,既没有爪,也没有防御性的硬甲或刺状物,令它们有没有防卫机制的错觉。但事实上它们却演化出不同的防卫机制去保护自己。蝾螈及青蛙的第一道防线为它们所制造的粘液分泌。这令它们的皮肤湿润并且难于捕捉。这些分泌物除了黏稠外,亦有难吃的味道,甚至带有毒性。[10]有观察纪录发现蛇在吞食非洲爪蟾时被逼张大嘴巴,从而让青蛙有逃走的机会。[11]有关蚓螈在这方面的所知甚少,但已知扁尾盲游蚓螈英语Typhlonectes compressicaudaTyphlonectes compressicauda)在巴西进行的一项实验中此种的毒素能杀死猎食它的鱼类。[12]部分的蝾螈的皮肤是有毒的。在北美洲生活的粗皮渍螈Taricha granulosa)及其同属物种均能制造出强力的神经毒素——河豚毒素,这种为已知非蛋白质最毒的物质。在测试中,鱼类、青蛙、爬行类、鸟类及哺乳类动物均对其无招架之力。[13][14]唯一已知的猎食者为束带蛇英语Thamnophis sirtalisThamnophis sirtalis)。当在与粗皮渍螈共同生活的地方出现的束带蛇族落是少数能抵受这种毒性的生物。它们因基因突变去改变它们的免疫系统而适应了这种毒性,使它们能以粗皮渍螈为食而不受到任何伤害。[15]这种关系构成它们之间的共同演化。当束带蛇演化出更好的防御能力后,粗皮渍螈也会加强它们的毒素去抵抗。诸如此类猎物与捕食者间不断精进毒素与抗毒能力的共演化现象被视为“军备竞赛”,使双方不断演化出更毒之毒素及更强之解毒能力。这种互相施加演化压力而改变彼此演化方向的现象固然为共演化的范例。[14]部分青蛙与蟾蜍也是有毒的,而它们的藏毒腺体多在颈的两侧及背部的疣上。这些区域都是显而易见,以向攻击者表示警号。此外这些分泌物亦会带来特别的气味或引起不同的物理及神经方面的症状。在极少量已被研究的两栖动物中,已分离了超过200种不同的有毒物质。[16]

有毒物种多以鲜艳的颜色去警告捕猎者。这些颜色多为红色或黄色配以黑色,例如火蝾螈就是明显的例子。一旦猎食者曾尝过一口这些物种,它们就会牢牢记着这些颜色的物种并不可口。一些物种的警告色长在腹部上,如铃蟾属的物种。因此它们在遇到攻击时反而会将腹部朝上,并分泌毒液以赶退敌人。并有一些物种本身没有毒性,如红背异箭毒蛙,就会模拟在其地域中有毒的物种的肤色以吓退猎食者。[17]

不少两生动物都是夜行性并于日间隐藏起来,以避开日间捕食的物种。其他两栖动物则善用不同的伪装避免被发现。这些物种多有斑驳的棕色、灰色或橄榄色等以混和于背景中。一些蝾螈在面对猎食者会有独特的反捕行为英语Antipredator adaptation。一项以北短尾鼩鼱英语Blarina brevicaudaBlarina brevicauda)及不同的蝾螈所作的测试中,发现不少蝾螈会在面对猎食者时会不断翻腾身体,并会高举或拍打尾巴,使猎食者在猎食时无可避免地接触到它们皮肤上制毒的腺体。[18]另一为人所知的防卫机制为自割尾巴以便逃脱。有研究指尾巴有独特的结构以便它们在危难时被移离身体。一般而言被自割的尾巴都能够再生,但所需的能量不菲。[19] 一些青蛙及蟾蜍则通过吸入大量空气令身体膨胀,使它们的外观变得巨大及凶猛起来,一些锄足蟾甚至会发出叫声并主动跳向攻击者。[20]大鲵角花蟾亚科英语Ceratophryinae(Ceratophryinae)物种及箱头蛙属英语PyxicephalusPyxicephalus)的物种都有尖锐的牙齿,并能在防制性的咬击中令对手流血受伤。分布于美国黑腹脊口螈英语Desmognathus quadramaculatusDesmognathus quadramaculatus)就能够对攻击它们的束带蛇造成它们身体两至三倍大小的伤口,并且常能在挣扎中离开险境。[21]

下属分类

[编辑]

本纲包括以下

目的地位未定的科:
目和科的地位未定的属:

参考文献

[编辑]
  1. ^ Blackburn, D. C.; Wake, D. B. Class Amphibia Gray, 1825. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness (PDF). Zootaxa. 2011, 3148: 39–55 [2021-01-22]. doi:10.11646/zootaxa.3148.1.8. (原始内容存档 (PDF)于2016-05-18). 
  2. ^ 2.0 2.1 Romer, A.S. Vertebrate Paleontology 3rd ed. University of Chicago Press. 1966. 
  3. ^ 引用错误:没有为名为colbert1969的参考文献提供内容
  4. ^ Carroll, RL. Vertebrate Paleontology and Evolution. WH Freeman & Co. 1988. 
  5. ^ 守护糖分快乐的蟾蜍,什么时候成了生态杀手?. 澎湃新闻 (新浪科技). 2020-11-26 [2024-07-01] (中文(简体)). 
  6. ^ Laurin, Michel. Terrestrial Vertebrates - Stegocephalians: Tetrapods and other digit-bearing vertebrates. 1996 [2008-02-18]. (原始内容存档于2008-02-10). 
  7. ^ Benton, M. J. Vertebrate Paleontology 2nd ed. Blackwell Science Ltd. 2000. 
  8. ^ Benton, M. J. Vertebrate Paleontology 3rd ed. Blackwell Science Ltd. 2004 [2008-02-16]. (原始内容存档于2008-10-19). 
  9. ^ Dorit, Walker & Barnes 1991,第847页.
  10. ^ Barthalmus, G. T.; Zielinski W. J. Xenopus skin mucus induces oral dyskinesias that promote escape from snakes. Pharmacology, Biochemistry Behavior. 1988, 30 (4): 957–959. PMID 3227042. doi:10.1016/0091-3057(88)90126-8. 
  11. ^ Crayon, John J. Xenopus laevis. AmphibiaWeb. [2012-10-08]. (原始内容存档于2014-10-09). 
  12. ^ Moodie, G. E. E. Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin. Canadian Journal of Zoology. 1978, 56 (4): 1005–1008. doi:10.1139/z78-141. 
  13. ^ Brodie, Edmund D. Jr. Investigations on the skin toxin of the adult rough-skinned newt, Taricha granulosa. Copeia. 1968, 1968 (2): 307–313. JSTOR 1441757. doi:10.2307/1441757. 
  14. ^ 14.0 14.1 Hanifin, Charles T.; Yotsu-Yamashita, Mari; Yasumoto, Takeshi; Brodie, Edmund D.; Brodie, Edmund D. Jr. Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. Journal of Chemical Ecology. 1999, 25 (9): 2161–2175. doi:10.1023/A:1021049125805. 
  15. ^ Geffeney, Shana L.; Fujimoto, Esther; Brodie, Edmund D.; Brodie, Edmund D. Jr.; Ruben, Peter C. Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction. Nature. 2005, 434 (7034): 759–763. PMID 15815629. doi:10.1038/nature03444. 
  16. ^ Stebbins & Cohen 1995,第110页.
  17. ^ Darst, Catherine R.; Cummings, Molly E. Predator learning favours mimicry of a less-toxic model in poison frogs. Nature. 2006, 440 (7081): 208–211. PMID 16525472. doi:10.1038/nature04297. 
  18. ^ Brodie, Edmund D. Jr.; Nowak, Robert T.; Harvey, William R. Antipredator secretions and behavior of selected salamanders against shrews. Copeia. 1979, 1979 (2): 270–274. JSTOR 1443413. doi:10.2307/1443413. 
  19. ^ Beneski, John T. Jr. Adaptive significance of tail autotomy in the Salamander, Ensatina. Journal of Herpetology. 1989, 23 (3): 322–324. JSTOR 156446. doi:10.2307/1564465. 
  20. ^ Arnold, Nicholas; Ovenden, Denys. Reptiles and Amphibians of Britain and Europe. Harper Collins Publishers. 2002: 13–18. ISBN 978-0-00-219318-4. 
  21. ^ Brodie, E. D. Jr. Biting and vocalisation as antipredator mechanisms in terrestrial salamanders. Copeia. 1978, 1978 (1): 127–129. JSTOR 1443832. doi:10.2307/1443832. 
  22. ^ Patocka, Jiri; Wulff, Kräuff; Palomeque, MaríaVictoria. Dart Poison Frogs and Their Toxins. ASA Newsletter. 1999, 5 (75) [2013-01-29]. ISSN 1057-9419. (原始内容存档于2014-03-23). 
  23. ^ Felipe L. Pinheiro, Estevan Eltink, Voltaire D. Paes-Neto, Arielli F. Machado, Tiago R. Simões and Stephanie E. Pierce. 2024. Interrelationships Among early Triassic Faunas of Western Gondwana and Laurasia as illuminated by A New South American benthosuchid temnospondyl. The Anatomical Record. DOI: 10.1002/ar.25384
  24. ^ Marzola Marco MARCO MARZOLA , Mateus Octávio OCTÁVIO MATEUS , Shubin Neil H. NEIL H. SHUBIN & Clemmensen Lars B. LARS B. CLEMMENSEN (2017) Cyclotosaurus naraserluki, sp. nov., a new Late Triassic cyclotosaurid (Amphibia, Temnospondyli) from the Fleming Fjord Formation of the Jameson Land Basin (East Greenland), Journal of Vertebrate Paleontology, 37:2, DOI: 10.1080/02724634.2017.1303501

延伸阅读

[编辑]

外部链接

[编辑]