The symbols a and a` denote prime numbers of the form 4n+1, the symbols b and b` denote
prime numbers of the form 4n+3. R stands for "is a square modulo" and N for
"is not a square modulo".
The third formula, for example, should be read as:
If a is a square modulo b, or equivalently, if -a is not a square modulo b; then both b and -b are squares modulo a.
(page 133 of the first edition of <a href="/w/index.php?title=Carl_Friedriech_Gauss&action=edit" class="new" title="Carl Friedriech Gauss">Gauss</a>' ''<a href="/wiki/Disquisitiones_Arithmeticae" title="Disquisitiones Arithmeticae">Disquisitiones Arithmeticae</a>'', containing the <a href="/wiki/Quadratic_reciprocity" title="Quadratic reciprocity">quadratic reciprocity law</a>. The symbols a and a' denote prime numbers of the form 4n+1, the symbols b and b' de)
原始上传日志
Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.
Click on date to download the file or see the image uploaded on that date.
(del) (cur) 15:22, 1 February 2006 . . en:User:Lenthe Lenthe ( en:User_talk:Lenthe Talk) . . 479x800 (71861 bytes) (page 133 of the first edition of Gauss' en:Disquisitiones_Arithmeticae Disquisitiones Arithmeticae, containing the en:Quadratic_reciprocity quadratic reciprocity law. The symbols a and a' denote prime numbers of the form 4n+1, the symbols b and b' de)
La bildo estas kopiita de wikipedia:en. La originala priskribo estas: == Summary == This is a scan of page 133 of the first edition of Gauss' ''Disquisitiones Arithmeticae'', containing the [[quadratic reciprocity|quadratic r