跳转到内容

铌的同位素

维基百科,自由的百科全书
(重定向自铌的同位素
主要的铌同位素
同位素 衰变
丰度 半衰期 (t1/2) 方式 能量
MeV
产物
91Nb 人造 680  ε 1.258 91Zr
β+ 0.236 91Zr
92Nb 痕量 3.47×107  β+ 0.984 92Zr
β 0.355 92Mo
93Nb 100% 稳定,带52粒中子
93mNb 人造 16.12  IT 0.031 93Nb
94Nb 痕量 2.04×104  β 2.045 94Mo
95Nb 人造 34.991  β 0.926 95Mo
标准原子质量英语Standard atomic weight (Ar, 标准)
  • 92.90637(1)[1]
←Zr40 Mo42

原子量:92.90637(1))共有58个同位素,其中有1个同位素是稳定的。

图表

[编辑]
符号 Z N 同位素质量(u
[n 1][n 2]
半衰期
[n 1][n 2]
衰变
方式
[2]
衰变
产物

[n 3][n 4]
原子核
自旋[n 1]
相对丰度
莫耳分率)[n 2]
激发能量[n 1][n 2]
81
Nb
41 40 80.94903(161)# <44 ns β+, p 80Y 3/2-#
p 80Zr
β+ 81Zr
82Nb 41 41 81.94313(32)# 51(5) ms β+ 82Zr 0+
83Nb 41 42 82.93671(34) 4.1(3) s β+ 83Zr (5/2+)
84Nb 41 43 83.93357(32)# 9.8(9) s β+ (>99.9%) 84Zr 3+
β+, p (<.1%) 83Y
84mNb 338(10) keV 103(19) ns (5-)
85Nb 41 44 84.92791(24) 20.9(7) s β+ 85Zr (9/2+)
85mNb 759.0(10) keV 12(5) s (1/2-)
86Nb 41 45 85.92504(9) 88(1) s β+ 86Zr (6+)
86mNb 250(160)# keV 56(8) s β+ 86Zr high
87Nb 41 46 86.92036(7) 3.75(9) min β+ 87Zr (1/2-)
87mNb 3.84(14) keV 2.6(1) min β+ 87Zr (9/2+)#
88Nb 41 47 87.91833(11) 14.55(6) min β+ 88Zr (8+)
88mNb 40(140) keV 7.8(1) min β+ 88Zr (4-)
89Nb 41 48 88.913418(29) 2.03(7) h β+ 89Zr (9/2+)
89mNb 0(30)# keV 1.10(3) h β+ 89Zr (1/2)-
90Nb 41 49 89.911265(5) 14.60(5) h β+ 90Zr 8+
90m1Nb 122.370(22) keV 63(2) µs 6+
90m2Nb 124.67(25) keV 18.81(6) s IT 90Nb 4-
90m3Nb 171.10(10) keV <1 µs 7+
90m4Nb 382.01(25) keV 6.19(8) ms 1+
90m5Nb 1880.21(20) keV 472(13) ns (11-)
91Nb 41 50 90.906996(4) 680(130) a ε (99.98%) 91Zr 9/2+
β+ (.013%) 91Zr
91m1Nb 104.60(5) keV 60.86(22) d IT (93%) 91Nb 1/2-
ε (7%) 91Zr
β+ (.0028%) 91Zr
91m2Nb 2034.35(19) keV 3.76(12) µs (17/2-)
92Nb 41 51 91.907194(3) 3.47(24)×107 a β+ (99.95%) 92Zr (7)+
β (.05%) 92Mo
92m1Nb 135.5(4) keV 10.15(2) d β+ 92Zr (2)+
92m2Nb 225.7(4) keV 5.9(2) µs (2)-
92m3Nb 2203.3(4) keV 167(4) ns (11-)
93
Nb
41 52 92.9063781(26) 稳定 9/2+ 1.0000
93mNb 30.77(2) keV 16.13(14) a IT 93Nb 1/2-
94Nb 41 53 93.9072839(26) 2.03(16)×104 a β 94Mo (6)+
94mNb 40.902(12) keV 6.263(4) min IT (99.5%) 94Nb 3+
β (.5%) 94Mo
95Nb 41 54 94.9068358(21) 34.991(6) d β 95Mo 9/2+
95mNb 235.690(20) keV 3.61(3) d IT (94.4%) 95Nb 1/2-
β (5.6%) 95Mo
96Nb 41 55 95.908101(4) 23.35(5) h β 96Mo 6+
97Nb 41 56 96.9080986(27) 72.1(7) min β 97Mo 9/2+
97mNb 743.35(3) keV 52.7(18) s IT 97Nb 1/2-
98Nb 41 57 97.910328(6) 2.86(6) s β 98Mo 1+
98mNb 84(4) keV 51.3(4) min β (99.9%) 98Mo (5+)
IT (.1%) 98Nb
99Nb 41 58 98.911618(14) 15.0(2) s β 99Mo 9/2+
99mNb 365.29(14) keV 2.6(2) min β (96.2%) 99Mo 1/2-
IT (3.8%) 99Nb
100Nb 41 59 99.914182(28) 1.5(2) s β 100Mo 1+
100mNb 470(40) keV 2.99(11) s β 100Mo (4+,5+)
101Nb 41 60 100.915252(20) 7.1(3) s β 101Mo (5/2#)+
102Nb 41 61 101.91804(4) 1.3(2) s β 102Mo 1+
102mNb 130(50) keV 4.3(4) s β 102Mo high
103Nb 41 62 102.91914(7) 1.5(2) s β 103Mo (5/2+)
104Nb 41 63 103.92246(11) 4.9(3) s β (99.94%) 104Mo (1+)
β, n (.06%) 103Mo
104mNb 220(120) keV 940(40) ms β (99.95%) 104Mo high
β, n (.05%) 103Mo
105Nb 41 64 104.92394(11) 2.95(6) s β (98.3%) 105Mo (5/2+)#
β, n (1.7%) 104Mo
106Nb 41 65 105.92797(21)# 920(40) ms β (95.5%) 106Mo 2+#
β, n (4.5%) 105Mo
107Nb 41 66 106.93031(43)# 300(9) ms β (94%) 107Mo 5/2+#
β, n (6%) 106Mo
108Nb 41 67 107.93484(32)# 0.193(17) s β (93.8%) 108Mo (2+)
β, n (6.2%) 107Mo
109Nb 41 68 108.93763(54)# 190(30) ms β (69%) 109Mo 5/2+#
β, n (69%) 108Mo
110Nb 41 69 109.94244(54)# 170(20) ms β (60%) 110Mo 2+#
β, n (40%) 109Mo
111Nb 41 70 110.94565(54)# 80# ms [>300 ns] 5/2+#
112Nb 41 71 111.95083(75)# 60# ms [>300 ns] 2+#
113Nb 41 72 112.95470(86)# 30# ms [>300 ns] 5/2+#
114Nb[3] 41 73
115Nb[3] 41 74
116Nb[4] 41 75
117Nb[5] 41 76
  1. ^ 1.0 1.1 1.2 1.3 画上#号的数据代表没有经过实验的证明,仅为理论推测。
  2. ^ 2.0 2.1 2.2 2.3 用括号括起来的数据代表不确定性。
  3. ^ 稳定的衰变产物以粗体表示。
  4. ^ 半衰期超过5亿年的衰变产物以粗斜体表示。
同位素列表
锆的同位素 铌的同位素 钼的同位素

参考文献

[编辑]
  1. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. Standard atomic weights of the elements 2021 (IUPAC Technical Report). Pure and Applied Chemistry. 2022-05-04. ISSN 1365-3075. doi:10.1515/pac-2019-0603 (英语). 
  2. ^ 存档副本. [2015-09-15]. (原始内容存档于2017-02-19). 
  3. ^ 3.0 3.1 Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon. J. Phys. Soc. Jpn. (Physical Society of Japan). 2010, 79 (7): 073201. Bibcode:2010JPSJ...79g3201T. arXiv:1006.0305可免费查阅. doi:10.1143/JPSJ.79.073201可免费查阅. 
  4. ^ Shimizu, Yohei; et al. Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns. Journal of the Physical Society of Japan. 2018, 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203可免费查阅. 
  5. ^ Sumikama, T.; et al. Observation of new neutron-rich isotopes in the vicinity of Zr110. Physical Review C. 2021, 103 (1): 014614 [2023-11-14]. Bibcode:2021PhRvC.103a4614S. S2CID 234019083. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248可免费查阅. (原始内容存档于2022-03-05).