调节T细胞
调节性T细胞(Regulatory T cells,,或称 Treg 细胞),原称为抑制性T细胞(suppressor T cells),是一种T细胞的亚群,能调节免疫系统,维持免疫耐受,并防止自体免疫疾病。Treg 细胞具有免疫抑制作用,通常会抑制或下调效应性T细胞的诱导与增殖。[1]Treg细胞表达生物标志物CD4、FOXP3和CD25,并被认为与CD4+ 细胞属于相同的细胞谱系。[2] 由于效应性T细胞也表达CD4和CD25,Treg细胞与效应性CD4+细胞难以区分,因此研究较具挑战性。研究发现细胞激素转化生长因子β(TGF-β)对于Treg细胞从初始CD4+细胞(naïve CD4+cells)分化是必要的,并在维持Treg细胞的体内稳态方面发挥重要作用。[3]
小鼠模式生物研究表明,调节Treg细胞可用于治疗自体免疫疾病与癌症,并促进器官移植[4]及伤口愈合。[5] 其在癌症中的作用较为复杂,Treg细胞在癌症患者体内通常呈上调状态,并会被招募至许多肿瘤部位。研究显示,肿瘤微环境内Treg细胞数量较多与较差的预后相关,Treg细胞可能会抑制肿瘤免疫反应,削弱机体对癌细胞的控制能力。[6] 免疫治疗研究正在探索如何调节T细胞以治疗癌症。[7]
细胞族群
[编辑]调节性T细胞是免疫系统的一部分,能抑制其他细胞的免疫反应。这是一种内建的“自我检查”机制,以防止过度的免疫反应。调节性T细胞有多种类型,其中最为人知的是表达CD4、CD25和FOXP3的细胞(CD4+CD25+ 调节性T细胞)。这些Treg细胞与辅助性T细胞不同。[8] 另一种调节性T细胞亚群为Treg17细胞。[9]在个体受到感染时,免疫系统会活化,而在感染控制后,调节性T细胞会协助关闭免疫反应,以防止自体免疫疾病的发生。[10]
CD4+ FOXP3+ CD25(高表达)调节性T细胞被称为“自然发生的”调节性T细胞("naturally occurring" regulatory Tcells)[11],以区别于体外生成的“抑制性”T细胞族群。其他调节性T细胞族群包括Tr1、Th3、CD8+CD28−及Qa-1限制性T细胞。这些细胞对于维持自体耐受性及免疫体内稳态的贡献尚未完全明确。
FOXP3可作为小鼠CD4+CD25+ T细胞的良好标记,但研究表明FOXP3也可在CD4+CD25− T细胞中表达。在人类体内,刚活化的传统T细胞(conventional T cells)也会表达FOXP3,因此不能作为Treg的特异性标记。[12]
参见
[编辑]参考文献
[编辑]- ^ Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. May 2006, 441 (7090): 235–238. Bibcode:2006Natur.441..235B. PMID 16648838. S2CID 4391497. doi:10.1038/nature04753.
- ^ Curiel TJ. Tregs and rethinking cancer immunotherapy. The Journal of Clinical Investigation. May 2007, 117 (5): 1167–1174. PMC 1857250
. PMID 17476346. doi:10.1172/JCI31202.
- ^ Chen W. Tregs in immunotherapy: opportunities and challenges. Immunotherapy. August 2011, 3 (8): 911–914. PMID 21843075. doi:10.2217/imt.11.79.
- ^ Miyara M, Gorochov G, Ehrenstein M, Musset L, Sakaguchi S, Amoura Z. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmunity Reviews. October 2011, 10 (12): 744–755. PMID 21621000. doi:10.1016/j.autrev.2011.05.004.
- ^ Nosbaum A, Prevel N, Truong HA, Mehta P, Ettinger M, Scharschmidt TC, et al. Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing. Journal of Immunology. March 2016, 196 (5): 2010–2014. PMC 4761457
. PMID 26826250. doi:10.4049/jimmunol.1502139.
- ^ Adeegbe DO, Nishikawa H. Natural and induced T regulatory cells in cancer. Frontiers in Immunology. 2013, 4: 190. PMC 3708155
. PMID 23874336. doi:10.3389/fimmu.2013.00190
.
- ^ Curiel TJ. Regulatory T cells and treatment of cancer. Current Opinion in Immunology. April 2008, 20 (2): 241–246. PMC 3319305
. PMID 18508251. doi:10.1016/j.coi.2008.04.008.
- ^ Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. February 2003, 299 (5609): 1057–1061. Bibcode:2003Sci...299.1057H. PMID 12522256. S2CID 9697928. doi:10.1126/science.1079490.
- ^ Singh B, Schwartz JA, Sandrock C, Bellemore SM, Nikoopour E. Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells. The Indian Journal of Medical Research. November 2013, 138 (5): 591–594. PMC 3928692
. PMID 24434314.
- ^ Shevach EM. Regulatory T cells in autoimmunity. Annual Review of Immunology. 2000, 18: 423–449. PMID 10837065. S2CID 15160752. doi:10.1146/annurev.immunol.18.1.423.
- ^ Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB Journal. June 2012, 26 (6): 2253–2276. PMID 22362896. S2CID 36277557. doi:10.1096/fj.11-193672
.
- ^ Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annual Review of Immunology. 2004, 22: 531–562. PMID 15032588. doi:10.1146/annurev.immunol.21.120601.141122.