跳转到内容

自旋-轨道作用

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自自旋-軌道耦合

量子力学里,一个粒子因为自旋轨道运动而产生的作用,称为自旋-轨道作用(英语:Spin–orbit interaction),也称作自旋-轨道效应自旋-轨道耦合。最著名的例子是电子能级的位移。电子移动经过原子核电场时,会产生电磁作用.电子的自旋与这电磁作用的耦合,形成了自旋-轨道作用。谱线分裂实验明显地侦测到电子能级的位移,证实了自旋-轨道作用理论的正确性。另外一个类似的例子是原子核壳层模型能级的位移。

半导体或其它新颖材料常常会涉及电子的自旋-轨道效应。自旋电子学专门研究与应用这方面的问题。

电子的自旋-轨道作用

[编辑]

在这篇文章里,会以相当简单与公式化的方式,详细地讲解一个束缚于原子内的电子的自旋-轨道作用理论。这会用到电磁学非相对论性量子力学一阶摄动理论。这自旋-轨道作用理论给出的答案,虽然与实验结果并不完全相同,但相当的符合。更严谨的导引应该从狄拉克方程开始,也会求得相同的答案。若想得到更准确的答案,则必须用量子电动力学来计算微小的修正。这两种方法都在本条目范围之外。

磁场

[编辑]

虽然在原子核的静止参考系 (rest frame) ,并没有作用在电子上的磁场;在电子的静止参考系,有作用在电子上的磁场存在。暂时假设电子的静止参考系为惯性参考系,则根据狭义相对论[1],磁场

(1)

其中, 是电子的速度, 是电子运动经过的电场,光速

以质子的位置为原点,则从质子产生的电场是

其中, 是质子数量(原子序数),单位电荷量真空电容率 是径向单位矢量, 是径向距离,径向矢量 是电子的位置。

电子的动量

其中, 是电子的质量。

所以,作用于电子的磁场是

(2)

其中,角动量

是一个正值因子乘以 ,也就是说,磁场与电子的轨道角动量平行。

磁矩

[编辑]

电子自旋的磁矩

其中,旋磁比 (gyromagnetic ratio) , 是自旋角动量,朗德g因子电荷量

电子的朗德g因子(g-factor)是 ,电荷量是 。所以,

(3)

电子的磁矩与自旋反平行。

哈密顿量摄动项目

[编辑]

自旋-轨道作用的哈密顿量摄动项目是

代入 的公式 (3) 和 的公式(2),经过一番运算,可以得到

一直到现在,都还没有考虑到电子静止坐标乃非惯性坐标。这事实引发的效应称为托马斯进动 (Thomas precession) 。因为这效应,必须添加因子 在公式里。所以,

能级位移

[编辑]

在准备好了自旋-轨道作用的哈密顿量摄动项目以后,现在可以估算这项目会造成的能量位移。特别地,想要找到 本征函数形成的基底,使 能够对角化。为了找到这基底,先定义总角动量算符

总角动量算符与自己的内积是

所以,

请注意 互相不对易 互相不对易。读者可以很容易地证明这两个事实。由于这两个事实, 的共同本征函数不能被当做零摄动波函数,用来计算一阶能量位移 的共同本征函数也不能被当做零摄动波函数,用来计算一阶能量位移 。可是, ,这四个算符都互相对易。 ,这四个算符也都互相对易。所以, ,这四个算符的共同本征函数 可以被当做零摄动波函数,用来计算一阶能量位移 ;其中, 主量子数 是总角量子数,角量子数 是自旋量子数。这一组本征函数所形成的基底,就是想要寻找的基底。这共同本征函数 的期望值是

其中,电子的自旋

经过一番繁琐的运算[2],可以得到 的期望值

其中,玻尔半径

将这两个期望值的公式代入,能级位移是

经过一番运算,可以得到

其中, 是主量子数为 的零摄动能级。

特别注意,当 时,这方程会遇到除以零的不可定义运算;虽然分子项目 也等于零。零除以零,仍旧无法计算这方程的值。很幸运地,在精细结构能量摄动的计算里,这不可定义问题自动地会消失。事实上,当 时,电子的轨道运动是球对称的。这可以从电子的波函数的角部分观察出来, 球谐函数

由于完全跟角度无关,角动量也是零,电子并不会感觉到任何磁场,所以,电子的 轨道没有自旋-轨道作用。

参阅

[编辑]

参考文献

[编辑]
  1. ^ French, A. P. Special Relativity (The M.I.T Introductory Physics Series). W. W. Norton & Company, Inc. 1968: pp. 237–250. ISBN 0748764224. 
  2. ^ Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. 2004: pp. 266–276. ISBN 0-13-111892-7. 

外部链接

[编辑]