跳转到内容

应力-能量张量

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自能量-應力張量

应力-能量张量,也称应力-能量-动量张量能量-应力张量能量-动量张量、简称能动张量,在物理学中是一个张量,描述能量动量在时空中的密度通量(flux),其为牛顿物理应力张量的推广。在广义相对论中,应力-能量张量为重力场的源,一如牛顿重力理论质量是重力场源一般。应力-能量张量具有重要的应用,尤其是在爱因斯坦场方程

定义

[编辑]

请注意我们将全程使用到爱因斯坦取和原则。当用到坐标表示,x0代表时间,其他坐标项x1, x2及x3则为剩下的空间分量。

应力-能量张量为一个二阶张量,给出四维动量或4-动量之a分量通过一坐标为常数xb之表面的通量。 另外要注意的是应力-能量张量是对称(当自旋张量为零时),亦即

自旋张量S非零,则

例子

[编辑]

此处举出一些特例:

代表能量密度

代表能量通过xi表面之通量,等同于

i 动量之密度。

分量

代表i 动量通过xj表面之通量。其中较特别的是:

代表一个类似压力张应力的物理量——正向应力(normal stress),而

代表剪应力(shear stress)。

提醒:在固态物理流体力学中,应力张量所指为应力-能量张量于共动参考系(comoving frame of reference)的空间分量。换句话说,工程学中的应力-能量张量与此处由动量对流项(momentum convective term)表示的应力-能量张量有所差异。

作为诺特流(Noether current)

[编辑]

应力-能量张量满足连续性方程(continuity equation)

.

此一物理量

是对一类空切面积分,得出能量-动量矢量。分量因此可以诠释为(非重力的)能量与动量之局域密度,而连续性方程的第一分量

则单纯是能量守恒的表述。空间分量 (i, j = 1, 2, 3)则对应到局域非重力的应力分量,其中包括了压力。此一张量为与时空移动相应的守恒诺特流(Noether current)

于广义相对论中

[编辑]

上面所给的关系并不唯一决定此张量。在广义相对论中,对称形式的张量,也就是额外满足

的关系的张量成为时空曲率的源,并且是与规范变换(gauge transformation)相应的流密度(current density),在此是以坐标变换为例。若有扭率(torsion),则此张量就不再是对称的。这对应到非零自旋张量的例子。参见爱因斯坦-嘉当重力

在广义相对论中,平直时空所用的偏导数(偏微分,partial derivative)修改为协变导数(covariant derivative)。这表示连续性方程中用张量表示的能量和动量不是绝对地守恒。在牛顿重力的经典极限,这一点有一个简单的解释:与引力势能互相交换的能量,它没有包含在能动张量中,而动量是通过场传递到其他物体。然而在广义相对论中,无法定义对应“重力场”能量密度与动量密度的物理量;任何意图要定义这些密度的膺张量(pseudo-tensor)均可以透过一个坐标转换使它们局域地消失为零。一般情况下,对于应力─能量张量只是部分的"协变守恒",我们必须感到心满意足。

在弯曲时空中,一般而言类空积分依赖于类空截面。事实上在一般的弯曲时空中是无法定义一个全局的能量─动量张量(原文误为'vector')。


爱因斯坦场方程

[编辑]

在广义相对论中,应力-能量张量主要出现在爱因斯坦场方程的研究题材中,方程常写为:

其中里奇张量, 为里奇标量(对里奇张量做张量缩并(tensor contraction)而得),以及宇宙重力常数(universal gravitational constant).

特殊情况下的应力-能量张量

[编辑]

孤立粒子

[编辑]

在狭义相对论中,质量为m的无相互作用粒子的应力-能量张量为:

其中δ是狄拉克δ函数是速度矢量:

处于平衡状态下的流体的应力-能量张量

[编辑]

对于处于热平衡状态下的流体,应力-能量张量具有一个特别简单的形式:

其中是质量-能量密度(牛顿每立方米),是流体静压力(牛顿每平方米),是流体的四维速度度量张量的逆。

四维速度满足:

在随流体一起移动的惯性参考系中,四维速度为:

度量张量的倒数为:

应力-能量张量是一个对角矩阵:

电磁应力-能量张量

[编辑]

一个无源电磁场的应力-能量张量为:

其中电磁张量

标量场

[编辑]

满足克莱因-戈尔登方程的标量场的应力-能量张量为:

各式各样的应力-能量张量

[编辑]

存在有一些互不相等的应力-能量张量。

正则(Canonical)应力-能量张量

[编辑]

其为与时空平移相关的诺特流

希尔伯特应力-能量张量

[编辑]

应力-能量张量在广义相对论中仅能以动态度规来定义。其定义成一个泛函导数(functional derivative)

其中Smatter作用量的非重力部分,为对称的且有规范不变性

Belinfante-Rosenfeld应力-能量张量

[编辑]

赝张量(Pseudotensors)

[编辑]

赝张量的例子有爱因斯坦赝张量蓝道-里夫须兹赝张量(Landau-Lifschitz pseudotensor)。

相关条目

[编辑]

外部链接

[编辑]