别列津斯基-科斯特利茨-索利斯相变
外观
(重定向自科斯特利茨-索利斯相变)
别列津斯基-科斯特利茨-索利斯相变(英语:Berezinskii–Kosterlitz–Thouless transition,又称BKT相变;科斯特利茨-索利斯相变及KT相变)是二维XY模型中的一种相变。它是指超过某一临界温度时,系统中的涡旋-反涡旋束缚态融化成为不成对的涡旋和反涡旋的相变。这种相变是以凝聚态物理学家瓦季姆·别列津斯基、约翰·科斯特利茨和戴维·索利斯命名的。BKT相变在凝聚态物理学中多个可用XY模型作近似的系统中出现,例如约瑟夫森接面阵列和薄无序超导颗粒膜。这个词最近还被研究二维超导绝缘体相变的社群应用,用于把库珀对钉在绝缘区,能够这样做是因为超导中的这一相变与BKT相变有相似的地方。
对这种相变的研究使得索利斯和科斯特利茨于2016年与邓肯·霍尔丹一同获授诺贝尔物理学奖。
XY模型
[编辑]
动力学
[编辑]単独涡旋的能量
[编辑]
一对涡旋的能量
[编辑]
参考资料
[编辑]- Березинский, В. Л., Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии I. Классические системы, ЖЭТФ, 1970, 59 (3): 907–920 (俄语). Translation available: Berezinskii, V. L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group I. Classical systems (pdf), Sov. Phys. JETP, 1971, 32 (3): 493–500 [2016-10-04], Bibcode:1971JETP...32..493B, (原始内容存档 (PDF)于2019-07-13)
- Березинский, В. Л., Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии II. Квантовые системы, ЖЭТФ, 1971, 61 (3): 1144–1156 (俄语). Translation available: Berezinskii, V. L., Destruction of long-range order in one-dimensional and two-dimensional systems having a continuous symmetry group II. Quantum systems (pdf), Sov. Phys. JETP, 1972, 34 (3): 610–616 [2016-10-04], Bibcode:1972JETP...34..610B, (原始内容存档 (PDF)于2019-07-13)
- Kosterlitz, J. M.; Thouless, D. J., Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, 1973, 6: 1181–1203, Bibcode:1973JPhC....6.1181K, doi:10.1088/0022-3719/6/7/010
- McBryan, O.; Spencer, T., On the decay of correlations in SO(n)-symmetric ferromagnets, Commun. Math. Phys., 1977, 53: 299, Bibcode:1977CMaPh..53..299M, doi:10.1007/BF01609854
- B. I. Halperin, D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978)
- A. P. Young, Phys. Rev. B 19, 1855 (1979)
- Resnick, D.J.; Garland, J.C.; Boyd, J.T.; Shoemaker, S.; Newrock, R.S., Kosterlitz Thouless Transition in Proximity Coupled Superconducting Arrays, Phys. Rev. Lett., 1981, 47: 1542, Bibcode:1981PhRvL..47.1542R, doi:10.1103/PhysRevLett.47.1542
- Fröhlich, Jürg; Spencer, Thomas, The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Comm. Math. Phys., 1981, 81 (4): 527–602, Bibcode:1981CMaPh..81..527F, doi:10.1007/bf01208273
- Z. Hadzibabic; et al, Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas, Nature, 2006, 41: 1118, Bibcode:2006Natur.441.1118H, arXiv:cond-mat/0605291 , doi:10.1038/nature04851
相关书籍
[编辑]- J.V. Jose, 40 Years of Berezinskii–Kosterlitz–Thouless Theory, World Scientific, 2013, ISBN 978-981-4417-65-5
- H. Kleinert, Gauge Fields in Condensed Matter, Vol. I, " SUPERFLOW AND VORTEX LINES", pp. 1–742, World Scientific (Singapore, 1989); Paperback ISBN 9971-5-0210-0 (also available online: Vol. I(页面存档备份,存于互联网档案馆). Read pp. 618–688);
- H. Kleinert, Multivalued Fields in Condensed Matter, Electrodynamics, and Gravitation, World Scientific (Singapore, 2008) (also available online: here (页面存档备份,存于互联网档案馆))