广田-萨摩方程(Hirota Satsuma equation)是一个三元非线性偏微分方程组:[1]
















Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
Hirota Satsuma equations traveling wave plot
|
- ^ 李志斌编著 《非线性数学物理方程的行波解》 140页 科学出版社 2008
- *谷超豪 《孤立子理论中的达布变换及其几何应用》 上海科学技术出版社
- *阎振亚著 《复杂非线性波的构造性理论及其应用》 科学出版社 2007年
- 李志斌编著 《非线性数学物理方程的行波解》 科学出版社
- 王东明著 《消去法及其应用》 科学出版社 2002
- *何青 王丽芬编著 《Maple 教程》 科学出版社 2010 ISBN 9787030177445
- Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
- Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
- Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
- Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
- Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
- Dongming Wang, Elimination Practice,Imperial College Press 2004
- David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
- George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759
- G Haghighatdoost, M Bazghandi, F Pashaie, Differential Invariants of Coupled Hirota-Satsuma KdV Equations. Kragujevac Journal of Mathematics 49 (5), 793-805, 2025 doi:10.46793/KgJMat2505.793H