跳转到内容

笛卡儿积

维基百科,自由的百科全书
(重定向自卡氏积
的笛卡尔积

数学中,两个集合笛卡儿积(英语:Cartesian product),又称直积,在集合论中表示为,是所有可能的有序对组成的集合,其中有序对的第一个对象是的成员,第二个对象是的成员。

举个实例,如果集合是13个元素的点数集合,而集合是4个元素的花色集合♠, ♥, ♦, ♣,则这两个集合的笛卡儿积是有52个元素的标准扑克牌的集合

笛卡儿积得名于笛卡儿,因为这概念是由他建立的解析几何引申出来。

笛卡儿积的性质

[编辑]

易见笛卡儿积满足下列性质:

  • 对于任意集合,根据定义有
  • 一般来说笛卡儿积不满足交换律结合律
  • 笛卡儿积对集合的满足分配律,即
  • 若一个集合包含有无限多的元素,那这个集合对自身的笛卡尔积有和一样多的元素。

笛卡儿平方和n元乘积

[编辑]

集合笛卡儿平方(或二元笛卡儿积)是笛卡儿积。一个例子是二维平面,(这里实数集) - 它包含所有的点,这里的是实数(参见笛卡儿坐标系)。

为了帮助枚举,可绘制一个表格。一个集合作为行而另一个集合作为列,从行和列的集合选择元素,以形成有序对作为表的单元格。

可以推广到在个集合上的n-元笛卡儿积:

实际上,它可以被等同为。它是n-元组的集合。

一个例子是欧几里得三维空间,这里的同样是指实数集。

无穷乘积

[编辑]

有限个集合可以看成某个一对一的有限集合序列 (因为序列是种以自然数系 为定义域的函数),而 值域恰好是预备要依序进行笛卡儿积的所有集合,换句话说:

这样的话,若有函数 满足:

那就等价于

换句话说,函数 可以看做 里的一个n-元组,而这就是以下无穷乘积定义的直观动机:

定义 — 集合族 的指标集,换句话说有指标函数 让二者等势

那以下的函数

被称为集合族 关于指标函数 无穷乘积

更进一步的,若此时取一 ,则以下定义的函数

被称为 投影映射

在无限情况,一个令人熟悉的特例是,当索引集合是自然数集的时候:这正是其中第i项对应于集合的所有无限序列的集合。再次,提供了这样的一个例子:

是实数的无限序列的搜集,可视之为带有无限个构件的向量或元组。另一个特殊情况(上述例子也满足它)是在乘积中的各因子Xi都是相同的时候,类似于“笛卡儿指数”。这样,在最先定义中的无限并集自身就是这个集合自身,而其他条件被平凡的满足了,所以这正是从IX的所有函数的集合。

在别的情况,无限笛卡儿积就不那么直观了;尽管在高等数学中的应用有其价值。

“非空集合的任意非空搜集的笛卡儿积为非空”这一陈述等价于选择公理

函数的笛卡儿积

[编辑]

如果是从的函数,而是从的函数,则它们的笛卡儿积是从的函数,带有

跟之前类似,函数的笛卡儿积也可以扩展到函数的元组和无限情况。

参见

[编辑]

外部链接

[编辑]