
此条目介绍的是数学上的区间概念。关于铁路运输的区间概念,请见“
闭塞 (铁路)”。
在图中的数轴上,所有大于x和小于x+a的数组成了一个开区间。
区间(英语:interval)在数学上是指某个范围的数的集合,或者更一般地是指某个范围的预序集元素的集合,一般以集合形式表示。
在初等代数,传统上区间指一个集,包含在某两个特定实数之间的所有实数,亦可能包含该两个实数(或其中之一)。区间表示法是表示一个变量在某个区间内的方式。通用的区间表示法中,圆括号表示排除,方括号表示包括。例如,开区间
表示所有在
和
之间的实数,但不包括
或
。另一方面,闭区间
表示所有在
和
之间的实数,以及
和
。[1]
在赋予通常序的实数集
里,以
为端点的开区间和闭区间分别是:

![{\displaystyle [a,b]=\{x\in \mathbb {R} \colon a\leq x\leq b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8c383da36732b5465a962646777e1df581e5d52)
类似地,以
为端点的两个半开区间定义为:
![{\displaystyle (a,b]=\{x\in \mathbb {R} \colon a<x\leq b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2ac6a7d10410e78402279912c4472921cad0be64)

在一些上下文中,两个端点要求满足
。这排除了
从而区间或是单元素集合或是空集的情形,也排除了
从而区间为空集的情形。
只有左端点
的开区间和半开区间分别如下。


只有右端点
的开区间和半开区间分别如下。

![{\displaystyle (-\infty ,b]=\{x\in \mathbb {R} \colon x\leq b\},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6f4e7ab6336f5e7616cdd7218d3aeace33a41cc4)
整个实数线等于没有端点的区间:

区间的概念在任何偏序集或者更一般地,在任何预序集中有定义。对于预序集
和两个元素
,我们可以类似定义[2]:11, Definition 11

![{\displaystyle [a,b]=\{x\in X\colon a\lesssim x\lesssim b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf1b91d4e0efd987fb45e4de370662d066493f63)
![{\displaystyle (a,b]=\{x\in X\colon a<x\lesssim b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c65294a9d7cd6a779496abf27cf02d0d1c1b5668)




![{\displaystyle (-\infty ,b]=\{x\in X\colon x\lesssim b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aac1feb3c6cb6fba7d13cdd4faadf6cc95f62b64)

其中
意思是
。其实,只有一个端点或者没有端点的区间等同于更大的预序集


上具有两个端点的区间,使得它是
的子集。当
时,可以取
为扩展实数线。
预序集
的子集
是序凸集,如果对于任意
以及任意
有
。与实区间的情形不同,预序集的序凸集不一定是区间。例如,在有理数的全序集
中,

是序凸集,但它不是
的区间,这是因为2的平方根在
中是不存在的。
设
是一个预序集,且
。包含在
中的
的序凸集关于包含关系构成偏序集。这个偏序集的极大元叫做
的序凸分支。[3]:Definition 5.1由佐恩引理,包含在
中的
的任意序凸集包含于
的一个序凸分支,然而这种序凸分支不一定是唯一的。在全序集中,这样的序凸分支确实唯一。也就是说,全序集的子集的序凸分支构成分划。
区间算术又称区间数学、区间分析、区间计算,在1950、60年代引进以作数值分析上计算舍去误差的工具。
属于
的某些
,及属于
的某些
,使得
区间算术的基本运算是,对于实数线上的子集
及
:
![{\displaystyle [a,b]+[c,d]=[a+c,b+d]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/fee8c5524fea89636103ea04d2271d03fdb2c888)
![{\displaystyle [a,b]-[c,d]=[a-d,b-c]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6d65fdee1ba80f2fa2179a29b5938439a15f9f96)
![{\displaystyle [a,b]\times [c,d]=[\min\{ac,ad,bc,bd\},\max\{ac,ad,bc,bd\}]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b334cf018eb4ccf7dcc69bb1fefa02bf878ad27f)
![{\displaystyle {\frac {[a,b]}{[c,d]}}=\left[\min \left\{{\frac {a}{c}},{\frac {a}{d}},{\frac {b}{c}},{\frac {b}{d}}\right\},\max \left\{{\frac {a}{c}},{\frac {a}{d}},{\frac {b}{c}},{\frac {b}{d}}\right\}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bd76a518c678329260f7626ced401e84cce0feed)
被一个包含零的区间除,在基础区间算术上无定义。
加法和乘法符合交换律、结合律和子分配律:集
是
的子集。
在法国及其他一些欧洲国家,用
代替
来表示开区间,例如:
![{\displaystyle \left]a,b\right[=\{x\mid a<x<b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1f5b58075e37eab0c81a7e8974553b5d32ae189)
![{\displaystyle \left[a,b\right]=\{x\mid a\leq x\leq b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2e3541db101303e3fe316f0cfb6aed0024010374)

![{\displaystyle \left]a,b\right]=\{x\mid a<x\leq b\}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f86c9f682967e3dd77e6d2e094308771219280a0)
国际标准化组织编制的ISO 31-11也允许这种写法[4]。
另外,在小数点以逗号来表示的情况下,为免产生混淆,分隔两数的逗号要用分号来代替,例如将
写成
。若只把小数点写成逗号,就会变成
,此时不易判断究竟是
与
之间,还是
与
之间的闭区间。
- ^ Interval and segment - Encyclopedia of Mathematics. encyclopediaofmath.org. Springer & The European Mathematical Society. [2021-05-18]. (原始内容存档于2014-12-26).
- ^ Vind, Karl. Independence, additivity, uncertainty. Studies in Economic Theory 14. Berlin: Springer. 2003. ISBN 978-3-540-41683-8. Zbl 1080.91001. doi:10.1007/978-3-540-24757-9 (英语).
- ^ Heath, R. W.; Lutzer, David J.; Zenor, P. L. Monotonically normal spaces. Transactions of the American Mathematical Society. 1973, 178: 481–493. ISSN 0002-9947. MR 0372826. Zbl 0269.54009. doi:10.2307/1996713 (英语).
- ^ ISO 31-11:1992. ISO. [2021-05-18]. (原始内容存档于2021-05-18) (英语).