跳转到内容

化学气相沉积

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自化学气相沉积法

化学气相沉积(英语:chemical vapor deposition,简称CVD)是一种用来产生纯度高、性能好的固态材料的化学技术。半导体产业使用此技术来成长薄膜。典型的CVD工艺是将晶圆(基底)暴露在一种或多种不同的前趋物下,在基底表面发生化学反应或/及化学分解来产生欲沉积的薄膜。反应过程中通常也会伴随地产生不同的副产品,但大多会随着气流被带走,而不会留在反应腔(reaction chamber)中。

微制程大都使用CVD技术来沉积不同形式的材料,包括单晶多晶非晶外延材料。这些材料有碳纤维碳纳米纤维纳米线纳米碳管SiO2硅锗硅碳氮化硅氮氧化硅及各种不同的high-k介质英语High-κ dielectric等材料。CVD制程也常用来生成合成钻石

化学气相沉积的种类

[编辑]

一些CVD技术被广泛地使用及在文献中被提起。这些技术有不同的起始化学反应机制(如活化机制)及不同的工艺条件。

  • 以反应时的压强分类
    • 常压化学气相沉积(Atmospheric Pressure CVD,APCVD):在常压环境下的CVD工艺。
    • 低压化学气相沉积(Low-pressure CVD,LPCVD):在低压环境下的CVD工艺。降低压强可以减少不必要的气相反应,以增加晶圆上薄膜的一致性。大部分现今的CVD工艺都是使用LPCVD或UHVCVD。
    • 超高真空化学气相沉积(Ultrahigh vacuum CVD,UHVCVD:在非常低压环境下的CVD工艺。大多低于10-6 Pa (约为10-8 torr)。注:在其他领域,高真空和超高真空英语ultra-high vacuum大都是指同样的真空度,约10-7 Pa。
  • 以气相的特性分类
    • 气溶胶辅助气相沉积(Aerosol assisted CVD,AACVD):使用液体/气体的气溶胶的前驱物成长在基底上,成长速度非常快。此种技术适合使用非挥发的前驱物。
    • 直接液体注入化学气相沉积(Direct liquid injection CVD,DLICVD):使用液体(液体或固体溶解在合适的溶液中)形式的前驱物。液相溶液被注入到蒸发腔里变成注入物。接着前驱物经由传统的CVD技术沉积在基底上。此技术适合使用液体或固体的前驱物。此技术可达到很多的成长速率。
  • 电浆技术(可参考电浆制程英语Plasma processing
    • 微波等离子体辅助化学气相沉积(Microwave plasma-assisted CVD,MPCVD)
    • 等离子体增强化学气相沉积法(Plasma-Enhanced CVD,PECVD):利用等离子体增加前驱物的反应速率。PECVD技术允许在低温的环境下成长,这是半导体制造中广泛使用PECVD的最重要原因。
    • 远距电浆增强化学气相沉积(Remote plasma-enhanced CVD,RPECVD):和PECVD技术很相近的技术。但晶圆不直接放在电浆放电的区域,反而放在距离电浆远一点的地方。晶圆远离电浆区域可以让制程温度降到室温。
  • 原子层化学气相气相沉积(Atomic layer CVD,ALCVD):连续沉积不同材料的晶体薄膜层。参见原子层外延(原子层沉积)。
  • 热丝化学气相沉积(Hot wire CVD,HWCVD):也称做触媒化学气相沉积(Catalytic CVD,Cat-CVD)或热灯丝化学气相沉积(Hot filament CVD,HFCVD)。使用热丝化学分解来源气体。[1]
  • 快速热化学气相沉积(Rapid thermal CVD, RTCVD):使用加热灯或其他方法快速加热晶圆。只对基底加热,而不是气体或腔壁。可以减少不必要的气相反应,以免产生不必要的粒子
  • 气相外延(Vapor phase epitaxy, VPE)

通常用于集成电路的沉积材料

[编辑]

本节讨论通常用于集成电路的CVD工艺。不同的材料会应用于不同的环境。

多晶硅

[编辑]

多晶硅是从硅烷(SiH4)沉积所得到的。使用以下反应:

SiH4 → Si + 2 H2

这种反应通常使用低压化学气相沉积系统(LPCVD),使用单纯的硅烷或用70-80%的氮硅烷作为原料。在温度在600°C至650°C之间,压力为25~150帕斯卡的条件下,沉积速度在每分钟10至20纳米之间。另一种工艺使用氢为还原剂。氢气会降低增长速度,所以温度提高到850甚至1050℃进行补偿。 多晶硅的沉积可以和掺杂同时进行。即把磷,砷或者乙硼烷加入CVD反应腔。乙硼烷的会令增长率增加,但砷化氢和磷化氢会令沉积速度减小。

二氧化硅

[编辑]

SiH4+O2 → SiO2+2H2

氮化硅

[编辑]

使用以下反应:SiH4 + 4 N2O → SiO2 + 2 H2O + 4 N2.

金属

[编辑]

通常用于高分子聚合的沉积材料

[编辑]
聚对二甲苯(parylene)以及其派生物

Parylene-N的单体经过高温炉(约摄氏600-800度)裂解后会形成自由基,而最后随着带入的惰性气体沉积在低温的表面上

大多数parylenes是钝化薄膜或涂层。这意味着他们保护的设备可以防止水,化学品的侵害。这是一个重要的特点,然而在许多应用上都需要键结的其他材料在聚对二甲苯上,例如对二甲苯对二甲苯,对二甲苯表面固定催化剂或酶......。一些的反应性对二甲苯,例如:1.胺基对二甲苯(一个胺在每个重复单元,Kisco公司产品)2.一甲基胺对二甲苯(一甲基胺每个重复单元,Kisco公司产品)

一甲基胺对二甲苯胺基对二甲苯有更大的反应性,因为它带着更强的硷基。当相邻的苯环胺组,胺基,是在稳定的共振,因此变得更加酸性,相对碱性较弱。然而[胺基对二甲苯]是更容易合成,因此它的成本较低。

参考文献

[编辑]
  1. ^ Schropp, R.E.I.; B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells (PDF). Materials Physics and Mechanics: 73–82. [2008-03-31]. (原始内容存档 (PDF)于2020-05-13). 

外部链接

[编辑]