跳转到内容

开普勒空间天文台

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自克卜勒任務
开普勒空间天文台
Kepler
开普勒的电脑模型
任务类型空间天文台
运营方NASA
大气及太空物理实验室英语Laboratory for Atmospheric and Space Physics(LASP)
国际卫星标识符2009-011A
卫星目录序号34380
网站kepler.nasa.gov
任务时长原定3.5年
实际共运行9年7个月又23天
航天器属性
制造方Ball Aerospace & Technologies英语Ball Aerospace & Technologies
发射质量1,052.4 千克
干质量1,040.7 千克
有效载荷质量478 千克
尺寸直径 2.7 米
高 4.7 米
功率1100
任务开始
发射日期2009年3月7日
3时49分57.465秒 UTC[1]
运载火箭三角洲二号运载火箭(7925-10L)
发射场卡纳维拉尔角空军基地 SLC-17B
任务结束
丢弃形式终止通讯
最后通信2018年10月30日
轨道参数
参照系日心轨道
轨域尾随地球
半长轴1 0133 AU
离心率0.036116
近日点0.97671 AU
远日点1.0499 AU
倾角0.44747°
周期372.57 天
近日点幅角294.04°
平近点角311.67°
平均运动0.96626°/天
历元January 1, 2018 (J2000: 2458119.5)[2]
主望远镜
类型施密特式
口径0.95米(3.1英尺)
观测范围0.708 m2(7.62 sq ft)[A]
波长430–890 nm[2]
可见光近红外线
转发器
带宽X波段(up):7.8 bit/s – 2 bit/s[2]
X波段(down):10 bit/s – 16 kbit/s[2]
Ka波段(down):可达 4.3 Mbit/s[2]
GRAIL →
各光学望远镜主镜尺寸比较

开普勒任务(英语:Kepler Mission)是美国国家航空航天局设计来发现环绕着其他恒星之类地行星空间天文台[4]。使用NASA发展的太空光度计,历经九年多的时间,在绕行太阳的轨道上,观测10万颗恒星的光度,检测是否有行星凌星的现象(以凌日的方法检测行星)。为了纪念德国天文学家开普勒,这个任务被命名为开普勒任务[5]

开普勒是NASA低成本的发现计划聚焦在科学上的任务。NASA的艾美斯研究中心英语Ames Research Center是这个任务的主管机关,提供主要的研究人员并负责地面系统的开发、任务的执行和科学资料的分析。开普勒任务进度的处理是由喷射推进实验室执行,贝尔太空科技公司英语Ball Aerospace & Technologies负责开普勒任务飞行系统的开发。

开普勒航天器于美东时间2009年3月6日22时49分57秒从美国佛罗里达州卡纳维拉尔角空军基地发射[6],已确认了130多个系外行星和发现了超过2700颗候选行星[7]

2013年5月15日,开普勒空间天文台由于反应轮故障,无法设定望远镜方向,因此被迫停止其搜寻系外行星任务[8]。同年8月15日,NASA宣布放弃两个故障的反应轮,以替代计划使用剩下两个正常的反应轮重新开始工作。

2018年10月中旬,开普勒空间天文台飞行燃料已出现燃料即将用罄讯号,正式进入退役倒数阶段,科学家们正尽力将所有数据回传地球。至10月30日,其燃料已完全耗尽,无法再受指令控制。后续任务已由同年4月成功发射升空的“凌日系外行星巡天卫星(TESS)”接手[9][10]

目标和方法

[编辑]
开普勒望远镜的构造
从下方观看开普勒望远镜

开普勒任务的科学目标是探索各种不同行星系的构造[11],通过勘测大量的恒星样本达到几个目标:

  • 对各种不同光谱类型的恒星进行广泛的观测,以确定有多少类似地球的行星或大行星存在或邻近适居带(也称为“古迪洛克行星”)[12]
  • 测量这些行星轨道的大小和形状的范围。
  • 估计有多少的行星存在于多星系统中。
  • 测量短周期巨大行星的亮度、大小、质量、密度和轨道的大小。
  • 使用其他的技术来辨认每个被发现的行星系统和它们的其他成员。
  • 确定这些拥有行星的恒星的特性。

利用其他方法检测到的系外行星绝大多数都是大行星,它们都像木星或者更大。开普勒是设计来发现只有这种质量的30至600分之一的行星,也就是类似地球这样大小的行星。使用的方法是凌日法,需要重复的观察到行星从恒星前方掠过的凌日现象,如果是地球大小的行星将会造成恒星的视星等降低0.01%的数量级。亮度减少的程度可以用来推测行星的质量,而由两次凌日的时间间隔可以推测行星轨道的大小和估计它的温度。

行星轨道能否横越过恒星的前方,其概率与沿着视线方向的轨道的直径和恒星的直径有关。像地球这样大小的行星,在1天文单位的距离外横越过像太阳这样大小恒星的概率是0.465%,或是215分之1;但在0.72天文单位(金星的轨道距离)概率就增加为0.65%;如果恒星是后期G型的恒星,例如鲸鱼座τ,这样的行星将会是类地行星。另一方面,因为在同一个系统内的行星倾向于在相似的平面上运行,因此发现多颗行星绕行同一颗恒星的概率也会较高。例如,一个外星人运用像开普勒这样的系统来观察地球凌日的现象,他有12%概率也会看见金星凌日。

开普勒任务发现类地行星的概率远高于哈勃空间望远镜,不仅是它有远大得多的视野(大约10平方度),并且还能检测行星凌星的现象。相反的,哈勃空间望远镜是有能力的,但其预设的使用目的是用来解决较大的问题,而且不会花费大量时间关注同一个星野范围。开普勒的任务在设计上要能同时观察十万颗的恒星,并且每30分钟测量一次它们的亮度变化,这使他很好的机会可以观察到凌日的现象。另一方面,对太阳大小的恒星有215分之一的概率,意味着在十万颗之中100%可以检测到,而且像地球这样的行星,开普勒可以达465颗之多。这个任务非常确定是很适合发现绕着其他恒星而像地球一样大小的行星[13][14]

由于光度减弱的非常少,因此开普勒必须至少连续观察到3次的行星凌星造成的现象才能确定;因为大的行星造成的信号比较容易检测出来,因此科学家预期开普勒最先发现的应该会是如同木星或是更大的行星,而且这样的报告可能只需要几个月就会获得。较小的行星,和更远的行星要花较多的时间,预期要找到像地球这样的行星需要三年或更长的时间[15]

来自这个任务的数据也能用来研究星震造成的各种不同型式的变星,特别是显示出类太阳震荡的。

状况

[编辑]
2009年3月6日发射的开普勒任务。

在2006年1月,由于预算的削减和NASA内部的整合,这个项目被延迟了8个月的时间。在2006年3月,又由于财政上的问题再被延迟了4个月。在这段时间,高增益天线从使用万向接头的平衡架被换成固定在航天器上的框架,减少了费用和复杂性,每个月可以省下一天的观测成本费用。

航天器在2009年3月7日03:49:57UTC(美东标准时间3月6日10:49:57)由三角洲二号运载火箭从佛罗里达的卡纳维拉尔角空军基地发射升空[1]。这次的发射完全成功,在04:55 UTC完成发射的3个阶段,航天器在进行科学观测之前大约将花费60天的时间进行测试和校准。 目前它传送回来的读数都很良好,光度计的校准工作也已经开始。望远镜的遮蔽物在4月7日已经移除[16],首拍的影像在第二天传送下来[17]

任务详情

[编辑]
开普勒任务在寻找银河系的来龙去脉
光度计在天鹅座天琴座内观测的视场。
开普勒首拍影像所调查的区域。

开普勒不在环绕地球的轨道上,而是在尾随地球的太阳轨道[15][18],所以不会被地球遮蔽而能持续的观测,光度计也不会受到来自地球的漫射光线影响。这样的轨道避免了重力摄动和在地球的轨道上固有扭矩,可以有一个更加稳定的观测平台。光度计指向天鹅座天琴座所在的领域,远离了黄道平面,所以在绕行太阳的轨道上,阳光也不会渗漏入光度计内。天鹅座也不会被柯伊伯带小行星带的天体遮蔽到,所以在观测上是一个很好的选择[14]

这样选择的另一个好处是开普勒所指向的方向是太阳系绕着银河系运动的中心,因此开普勒所观察到的恒星与银河中心的距离大致上与太阳系是相同的,并且也都靠近银河的盘面。这是个很重要的事实,如果星系也有适居带的位置,就如同建议的地球殊异假说

估计航天器的质量是1039千克,口径是0.95米,主镜(在地球轨道之外最大的镜片)1.4米,视野(FOV)有105 deg²(大约12度的直径),大约是胳膊伸直时一个拳头遮蔽的视野。光度计有一个柔软的焦点提供良好的光度测量,而不是清晰的图像。结合的光度差异精确性(CDPP,combined differential photometric precision),对一颗m(V)=12类似太阳的恒星,进行6.5小时的影像综合是20ppm,已包括恒星本身预期可能的 10ppm光度变化。而一颗类似地球的行星凌星造成的光度变化是84ppm,而且轨道经过恒星中心时至少将持续13小时。焦平面由42个1024 X 2200的CCD组成,每个画素的大小是27微米,是发射至太空中最大的照相机。这个阵列由一条连结到外面的热导管来冷却[14]。CCD每3秒中读出一次资料,并且可以暂留15分钟,只有对应到有兴趣目标恒星画素的资料才会被保存,并透过遥测传回到地面。这个任务在生命周期中,包括持3.5年的运作,估计要花费6亿美金[14]

任务的运作

[编辑]
开普勒的轨道–会在分至点调整太阳阵列。

开普勒任务由外面位于科罗拉多州波尔德市的大气和太空物理实验室(LASP)负责运作。太阳阵列在每年位于分至点时会转动至正对着太阳的方向,这些转动将用来优化照射到阵列上的阳光,并使热辐射器保持指向深太空的方向[14]。同时,LASP和贝尔太空科技公司(该公司负责建造航天器和仪器)从位于科罗拉多州波尔德市的科罗拉多大学的控制中心进行操作。LASP进行基本的任务计划和科学资料最初的收集和分发工作。

NASA每星期两次透过X-波段的通信线路与航天器联系,下达指令和进行状态更新,每个月一次使用Ka下载科学性的数据,传输的最大速率是4.33Mb/s。开普勒航天器在船上会自己进行部分的资料分析,只在必要时才会传送科学性的数据,以保持带宽[19]

在任务期间由LASP收集的遥测科学资料会被送至位于马里兰州巴尔的摩约翰霍普金斯大学校园内的空间天文台科学研究所开普勒数据管理中心(DMC)。这些遥测科学资料会被解码并且处理成未校正的FITS- 并由DMC格式化成科学数据产品,然后通过在NASA的艾美斯研究中心的科学操作中心(SOC)进行校正和最后的处理。SOC将送回校正和处理好的数据产品和科学结果给DMC做长期的归档和经由在STScl的多任务档案(MAST)分送给世界各地的天文学家。

成果

[编辑]
开普勒20e、开普勒20f和地球金星的比较

开普勒空间天文台于2010年4月1日宣布的第一个主要研究结果。正如天文学家预期,最初发现的行星都是短周期行星。随着任务持续继续,更多长周期行星候选逐渐被发现。2011年12月,总共有2,326颗候选行星被发现[20][21]。其中207颗与地球大小相似、680颗是超级地球、1181颗为海王星大小、203颗为木星的大小、55颗则比木星更大。此外,48颗候选行星被发现位于可居住区。开普勒空间天文台团队估计,大约有5.4%的恒星拥有地球大小的行星候选,而17%的恒星则有多颗行星。

2011年12月,两颗候选行星开普勒20e[22]开普勒20f[23]被证实环绕类太阳的恒星开普勒20[24][25][26]

2013年

[编辑]

依据加州理工学院的天文学家在2013年元月发表的一项研究成果,银河系拥有1000亿至4000亿颗行星,即每一颗恒星至少拥有1颗系外行星[27][28]。此一研究结果是基于对开普勒-32恒星的行星系统,认为银河系中的恒星有行星环绕是很普遍的。在2013年1月7日,他们宣布又发现461颗系外行星候选者[29]。开普勒观测得越久,它可以检测出周期更长与更多的行星[29]

自从2012年2月释出开普勒星表以来,开普勒发现的行星候选者已经增加了20%,总数已经达到2,740颗,环绕在2036颗恒星的周围。

——NASA[29]

在2013年宣布的新候选者,KOI-172.02是一颗在适居带环绕着与太阳相似恒星的类地球系外行星,是可能存在着外星生命的“主要候选者”[30]

2014年

[编辑]

2014年2月13日,科学家宣布发现数百个可能为行星的天体,其中有几个大小与地球相约,且位于适居带中。[31]

2月26日,科学家宣布从开普勒数据中,证实了715颗新的系外行星。发现所运用的新方法称为“多重性确认”,即从过去在聚星系统周围发现的行星的确认率进行推算。这种方法用在多行星系统上,可以大大加快多个新行星的确认过程。发现的新行星中,95%比海王星小,其中包括开普勒-296f在内的4颗行星,大小低于地球的2.5倍,而且位于适居带中,即其表面温度适宜液态水的存在。[32][33][34][35]

开普勒所得出的数据也有助超新星的观测和研究。[36]由于它采集数据的频率为每半小时一次,所以对于监视这种短期天文事件极为有用。[36]

2014年12月18日,美国国家航空航天局宣布K2阶段任务发现了首颗系外行星:一个编号为HIP 116454 b超级地球。研究团队在为展开K2任务做准备的工程数据中,发现了这颗行星的标记。由于只探测到一次凌日事件,所以须作出进一步的径向速度测量。[37]

2015年

[编辑]
如图所示,处于适居带与地球尺寸相近的系外行星已确认有8个。[38]

2015年1月6日,开普勒空间天文台团队宣布,确认系外行星已超过1000个;其中,最新发现的三个行星,开普勒438b开普勒442b开普勒440b,分别处于它们各自太阳的适居带;在这三个新行星里,有两个可能是由岩石构成。[38]

1月27日,英国伯明翰大学研究团队发布,从分析开普勒空间天文台数据,发现最古老的行星系,至少有5颗太阳系外行星围绕着年龄为112亿岁的恒星开普勒444运转。[39][40]

7月23日,NASA宣布发现系外行星开普勒-452b,其距离地球1400光年。开普勒-452b围绕其恒星开普勒-452公转,距离主星位置适合液态水的存在。开普勒-452b的体积比地球大60%,有较大可能为岩石星球。它距离其主星恒星的距离,和地球和太阳之间的距离相似,这颗恒星本身距离地球430秒差距,在天鹅座。它比太阳稍亮,年龄较太阳大15亿年。[41]

9月14日,天文学家分析开普勒空间天文台数据后,发现F-型主序星KIC 8462852亮度有异常起伏。天文学家试图用一些假说来解释这种异常的亮度变化,例如彗星云气、小行星带、外星智慧生命存在的迹象等[42][43][44]

2016年

[编辑]

2016年5月10日,NASA宣布开普勒空间天文台已经发现1,284颗新行星。根据大小推测,约有550颗可能是岩石行星,其中九颗位于行星适居区:[45]

截至2018年 (2018-Missing required parameter 1=month!),天文学家发现超过18,000颗系外行星候选者,大约3,800颗已被确认,2,325颗由开普勒空间天文台所发现[45]

相关条目

[编辑]

注释

[编辑]
  1. ^ Aperture of 0.95 m yields a light-gathering area of Pi×(0.95/2)2 = 0.708 m2; the 42 CCDs each sized 0.050 m × 0.025m yields a total sensor area of 0.0525 m2:[3]

参考资料

[编辑]
  1. ^ 1.0 1.1 KASC Scientific Webpage. Kepler Asteroseismic Science Consortium. 2009-03-14 [2009-03-14]. (原始内容存档于2012-05-05). 
  2. ^ 2.0 2.1 2.2 2.3 2.4 Kepler (spacecraft). JPL Horizons On-Line Ephemeris System. NASA/JPL. 2018-01-06 [2018-01-06]. (原始内容存档于2016-03-04). 
  3. ^ Kepler Spacecraft and Instrument. NASA. 2013-06-26 [2014-01-18]. (原始内容存档于2014-01-19). 
  4. ^ David Koch; Alan Gould. Kepler Mission. NASA. March 2009 [2009-03-14]. (原始内容存档于2014-03-06). 
  5. ^ Edna DeVore. Closing in on Extrasolar Earths. SPACE.com. 2008-06-09 [2009-13-14]. (原始内容存档于2009-04-20). 
  6. ^ Staff writers. Nasa launches Earth hunter probe. BBC News. 2009-03-07 [2009-03-14]. (原始内容存档于2012-12-25). 
  7. ^ Matthew Francis. RIP and good planet hunting, Kepler. Ars Technica. 2013-05-16 [2013-05-16]. (原始内容存档于2013-05-15). 
  8. ^ 自然期刊. [2013-05-18]. (原始内容存档于2013-06-08). 
  9. ^ 劳苦功高 开普勒空间天文台燃料耗尽将退役页面存档备份,存于互联网档案馆)佛罗里达州坦帕/中央社 2018-10-31
  10. ^ 探测小行星带黎明号燃料尽 NASA宣告寿终正寝页面存档备份,存于互联网档案馆)佛罗里达州坦帕/中央社 2018-11-01
  11. ^ David Koch; Alan Gould. Overview of the Kepler Mission. NASA. March 2009 [2009-03-14]. (原始内容存档于2007-10-11). 
  12. ^ Muir, Hazel. 'Goldilocks' planet may be just right for life. New Scientist. 2007-04-25 [2009-04-02]. (原始内容存档于2009-04-18). 
  13. ^ David Koch; Alan Gould. Kepler Mission: Frequently Asked Questions. NASA. March 2009 [2009-03-14]. (原始内容存档于2007-08-20). 
  14. ^ 14.0 14.1 14.2 14.3 14.4 Kepler: NASA’s First Mission Capable of Finding Earth-Size Planets (PDF). NASA. February 2009 [2009-03-14]. (原始内容存档 (PDF)于2009-03-10). 
  15. ^ 15.0 15.1 Kepler Mission Rockets to Space in Search of Other Earth (新闻稿). NASA. 6 March 2009 [2009-03-14]. (原始内容存档于2009-03-15). 
  16. ^ DeVore, Edna. Planet-Hunting Kepler Telescope Lifts Its Lid. SPACE.com. 2009-04-09 [2009-04-14]. (原始内容存档于2009-04-12). 
  17. ^ NASA's Kepler Captures First Views of Planet-Hunting Territory. NASA. 2009-04-16 [2009-04-16]. (原始内容存档于2009-04-18). 
  18. ^ David Koch; Alan Gould. Kepler Mission: Launch Vehicle and Orbit. NASA. March 2009 [2009-03-14]. (原始内容存档于2007-06-22). 
  19. ^ Hansen Ng. Kepler Mission Sets Out to Find Planets Using CCD Cameras. DailyTech. 2009-03-08 [2009-03-14]. (原始内容存档于2009-03-10). 
  20. ^ "Kepler-22b, Super-Earth in the habitable zone of a Sun-like Star"页面存档备份,存于互联网档案馆). Kepler – NASA.gov. 5 December 2011.
  21. ^ Govert Schilling. 'Super-Earth' Found in Habitable Zone. AAAS. 2011-09-12 [2012年10月18日]. (原始内容存档于2011年9月25日). 
  22. ^ NASA Staff. Kepler: A Search For Habitable Planets - Kepler-20e. NASA. 2011-12-20 [2011-12-23]. (原始内容存档于2013-01-26). 
  23. ^ NASA Staff. Kepler: A Search For Habitable Planets - Kepler-20f. NASA. 2011-12-20 [2011-12-23]. (原始内容存档于2013-01-26). 
  24. ^ Johnson, Michele. NASA Discovers First Earth-size Planets Beyond Our Solar System. NASA. 2011-12-20 [2011-12-20]. (原始内容存档于2011-12-21). 
  25. ^ Hand, Eric. Kepler discovers first Earth-sized exoplanets. Nature. 2011-12-20. doi:10.1038/nature.2011.9688. 
  26. ^ Overbye, Dennis. Two Earth-Size Planets Are Discovered. New York Times. 2011-12-20 [2011-12-21]. (原始内容存档于2013-01-26). 
  27. ^ Claven, Whitney. Billions and Billions of Planets. NASA. 2013-01-03 [2013-01-03]. (原始内容存档于2013-01-26). 
  28. ^ Staff. 100 Billion Alien Planets Fill Our Milky Way Galaxy: Study. Space.com. 2013-01-02 [2013-01-03]. (原始内容存档于2013-01-03). 
  29. ^ 29.0 29.1 29.2 NASA's Kepler Mission Discovers 461 New Planet Candidates. [2013-02-23]. (原始内容存档于2013-03-01). 
  30. ^ Moskowitz, Clara. Most Earth-Like Alien Planet Possibly Found. Space.com. 2013-01-09 [2013-01-09]. (原始内容存档于2013-03-01). 
  31. ^ Welcome to the NASA Exoplanet Archive. exoplanetarchive.ipac.caltech.edu. February 27, 2014 [2014-02-27]. (原始内容存档于2014年2月27日). February 13, 2014: The Kepler project has updated dispositions for 534 KOIs in the Q1-Q16 KOI activity table. This brings the total number of Kepler candidates and confirmed planets to 3,841. For more information, see the Purpose of KOI Table document and the interactive tables. 
  32. ^ Johnson, Michele; Harrington, J.D. NASA's Kepler Mission Announces a Planet Bonanza, 715 New Worlds. NASA. 2014-02-26 [2014-02-26]. (原始内容存档于2014-02-28). 
  33. ^ Wall, Mike. Population of Known Alien Planets Nearly Doubles as NASA Discovers 715 New Worlds. Space.com. 2014-02-26 [2014-02-26]. (原始内容存档于2019-04-12). 
  34. ^ Amos, Jonathan. Kepler telescope bags huge haul of planets. BBC News. 2014-02-26 [2014-02-27]. (原始内容存档于2014-02-28). 
  35. ^ Overbye, Dennis. From Kepler Data, Astronomers Find Galaxy Filled With More but Smaller Worlds. New York Times. 2014-02-27 [2014-02-28]. (原始内容存档于2014-02-28). 
  36. ^ 36.0 36.1 R. Cowen - Kepler clue to supernova puzzle (2014) - Nature. [2014-02-28]. (原始内容存档于2014-02-28). 
  37. ^ Chou, Felicia; Johnson, Michele. NASA's Kepler Reborn, Makes First Exoplanet Find of New Mission. NASA. 2014-12-18 [2014-12-19]. Release 14-335. (原始内容存档于2014-12-19). 
  38. ^ 38.0 38.1 Clavin, Whitney; Chou, Felicia; Johnson, Michele. NASA's Kepler Marks 1,000th Exoplanet Discovery, Uncovers More Small Worlds in Habitable Zones. NASA. 2015-01-06 [2015-01-06]. (原始内容存档于2015-01-07). 
  39. ^ Campante, T.L.; et al. An ancient extrasolar system with five sub-Earth-size planets. Arxiv. 2015-01-26 [2015-01-27]. doi:10.1088/0004-637X/799/2/170. (原始内容存档于2015-11-07). 
  40. ^ Dunn, Marcia. Astronomers find solar system more than double ours in age. AP News. 2015-01-27 [2015-01-27]. (原始内容存档于2015-01-28). 
  41. ^ NASA’s Kepler Mission Discovers Bigger, Older Cousin to Earth. NASA News. 2015-07-23 [2015-07-23]. (原始内容存档于2015-10-07). 
  42. ^ Kaplan, Sarah. The strange star that has serious scientists talking about an alien megastructure. The Washington Post. 2015-10-15 [2015-10-15]. ISSN 0190-8286. (原始内容存档于2017-07-10). 
  43. ^ Andersen, Ross. The Most Mysterious Star in Our Galaxy. The Atlantic. 2015-10-13 [2015-10-13]. (原始内容存档于2016-06-23). 
  44. ^ Boyajian, T.S.; LaCourse, D.M.; Rappaport, S.A.; Fabrycky, D.; Fischer, D.A.; Gandolfi, D.; Kennedy, G.M.; Liu, M.C.; Moor, A.; Olah, K.; Vida, K.; Wyatt, M.C.; Best, W.M.J.; Ciesla, F.; Csak, B.; Dupuy, T.J.; Handler, G.; Heng, K.; Korhonen, H.; Kovacs, J.; Kozakis, T.; Kriskovics, L.; Schmitt, J.R.; Szabo, Gy.; Szabo, R.; Wang, J.; Goodman, S.; Hoekstra, A.; Jek, K.J. Planet Hunters X. KIC 8462852- Where's the flux? (PDF). MNRAS. 2015-09-14 [2015-10-13]. (原始内容存档 (PDF)于2016-09-13).  (Abstract页面存档备份,存于互联网档案馆))
  45. ^ 45.0 45.1 NASA's Kepler Mission Announces Largest Collection of Planets Ever Discovered. NASA. 2016-05-10 [2016-05-10]. (原始内容存档于2016-06-20). 

外部链接

[编辑]