跳转到内容

相位调制

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自调相
调制方式
连续调制
调幅调频调角
模拟AM
SSB · DSB
FMPM
数字ASK
OOK · QAM
FSK
MSK · GFSK
PSK
CPM
其他SM英语Space modulation (模拟)
脉冲调制
模拟PAM · PDM · PPM
数字PCM · PWM
扩频
CSS英语Chirp spread spectrum · DSSS · THSS英语Time-hopping · FHSS
另见
调制 · 线路码 · 调制解调器 · ΔΣ调制 · OFDM · FDM
调制波()调制载波()生成PM信号(绿)。
  g(t) = π/2×sin[ 2×2π t + π/2×sin( 3×2π t ) ]  

调相(英语:Phase Modulation,缩写:PM),又称相位调制,是一种以载波瞬时相位变化来表示信息调制方式。

相位调制广泛用于发射无线电波,并且是大量技术(如Wifi、GSM和卫星电视)背后的许多数字传输编码方案的一部分。

数字合成器英语digital synthesizer中,PM用来产生信号和波形,例如在Yamaha DX7英语Yamaha DX7中实现了调频合成英语FM synthesis。相关的一种声音合成叫做相位失真英语phase distortion synthesis用于卡西欧CZ合成器英语Casio CZ synthesizers

性质

[编辑]
  1. 相位调制的传送功率具有恒定性
    • 对于任何时间,以及任何敏感性因数,相位调制的幅度都会等于载波幅度。所以,由此可知,在相位调制中,若假设负载电阻是1欧姆,那么平均传送功率是一个常数:
  2. 相位调制过程的非线性性质
    • 相位调制的波并不满足叠加性原理。假设一信息信号可以表示为:
    另外,再假设以及产生的PM波分别是,那么我们便可以将以上的PM波如此表示:
    那么,我们可以发现,由于
    所以相位调制的波不满足叠加原理。
    相位调制的非线性性质让PM波的频谱分析与噪声分析变得更加复杂,正因为此,相位调制可以很好地对抗噪声。
  3. 零相交的不规律性
    零相交(zero-crossing)是指,在时间轴上,波的幅度由正变成负或由负变成正的瞬间。而一个PM波的零相交,并没有规律性存在。事实上,相位调制波这样的零相交不规律性,是因为调制过程的非线性性质所致。
  4. 信息波形难以形象化
    对于调幅,只要调制百分比小于百分之百,便可以将调制波的波封视为信息波。但是,在相位调制中并无法如此行。事实上,在相角调制波里难以形象化信息波形,是因为相位调制波的非线性性质所致。
  5. 可以透过增加传输带宽,来交换噪声性能表现
    和调幅相比,相位调制一个非常好的优点是,它可以改善噪声性能。之所以会有这样的优点是因为,对于相加性噪声,如果是调制一个弦载波的相角,那么便会比调制一个弦载波的幅度,传送信息信号时较不敏感。但是,这样噪声性能的改善,是透过牺牲相位调制所需的一个传输带宽来达成的。亦即,相位调制可以利用增加传输带宽来换得噪声性能改善的效果,相较之下,在调幅中,没有这样的交换可能。

理论

[编辑]

PM将复包络的相角改变得与消息信号成正比。

假定要发送的信号(称为调制信号或消息信号)是 ,信号调制的载波为

注释:

载波(时间) = (载波幅度)*sin(载波频率*时间 + 相移)

这使得已调信号为

这说明了 如何调制相位 - 在某一时间点的 m(t) 越大,该点调制信号的频移越大。它也可以看成是改变了载波信号的频率,于是当频率调制表示为相位调制对时间求导时,相位调制就可以认为是频率调制的一种特殊情形。

调制信号在这里可以是

频谱特性的数学运算表明有两个区域尤其值得关注:

  • 对于幅度小的信号,PM与幅度调制(AM)类似,并且很遗憾基带带宽会加倍和效率也不高。
  • 对于单一正弦大信号,PM与FM类似,它的带宽约为
,
其中 是后文会定义的调制指数。这也被称为PM的卡森带宽法则

调制指数

[编辑]

同其他调制指数英语modulation index一样,这个量表示调制变量在未调制水平附近变化的范围。它涉及到载波信号的相位变化:

,

其中 是峰值相位偏差。与频率调制中的调制指数形成对比。

参见

[编辑]