求和符号(英语:summation;符号:
,读作:sigma),是欧拉于1755年首先使用的一个数学符号。这个符号是源自于希腊文σογμαρω(增加)的字头,Σ正是σ的大写。
求和指的是将给定的数值相加的过程,又称为加总。求和符号常用来简化有多个数值相加的数学表达式。
假设有
个数值
,则这
个数值的总和
可表示为
。
用等式来呈现的话就是
。
举例来说,若有4个数值:
,则这4个数值的总和为:
在数学中,求和是任何类型数字的序列相加,称为加数或加数;结果是它们的总和或总数。除了数字之外,也可以对其他类型的值求和:函数、向量、矩阵、多项式,以及通常在其上定义了表示为“+”的运算的任何类型的数学对象的元素。
无穷序列的总和称为级数,它们涉及极限的概念,本条目不予考虑。
显式序列的总和表示为一连串的加法。例如,[1, 2, 4, 2] 的和记为 1 + 2 + 4 + 2,得到 9,即 1 + 2 + 4 + 2 = 9。因为加法是结合可交换的,所以有不需要括号,无论加法的顺序如何,结果都是一样的。只有一个元素的序列的总和会产生这个元素本身。按照惯例,空序列(没有元素的序列)的总和结果为 0。
- 裂项法:利用
求出
。
- 错位相减法:透过两个求和式的相减化简求和数列的求和方法。
- 倒序求和:对于有对称中心的函数
首尾求和[1][2]
- 逐项求导:可从
推导出
[3]
- 阿贝尔变换:

以下设p为多项式,

[编辑]
是对一个多项式求和,自然数方幂和、等幂求和、等差数列求和都属于对多项式求和。
- 帕斯卡矩阵形式
[4]
- 差分变换形式

[5]

[编辑]
当
为多项式,
易求高阶导数时,
有封闭型和式
[6]

[编辑]
- 有限和
有封闭型和式
- 当p为常数时,是对等比数列求和,当p为一次多项式时,是对差比数列求和。

[4]

[编辑]
[7]

[编辑]
,其中
为调和数或调和级数


[参 1]
[参 2]






[参 3]




范德蒙恒等式与超几何函数有关系:


范德蒙恒等式与广义超几何函数有关系:

当
在[a,b]单调递增时:

当
在[a,b]单调递减时:
[8]
以
为例:
syms k n;symsum(k^9,k,1,n)
In[1]:= Sum[i^9, {i, 1, n}]
Out[1]:=
- ^ 赵丽棉 黄基廷. n次单位根在代数问题中的应用. 高等数学研究. 2010, (4) [2018-06-24]. (原始内容存档于2019-05-02).
- ^ 徐更生 何廷模. 斐波那契数列与组合数的一个关系及推广. 中学教研. 1991, (10) [2018-06-24]. (原始内容存档于2019-05-02).
- ^ 伍启期. 组合数列求和. 佛山科学技术学院学报(自然科学版). 1996, (4) [2018-06-24]. (原始内容存档于2019-05-02).
- ^ 马志钢. 倒序求和几例. 中学生数学. 2006, (5) [2014-07-16]. (原始内容存档于2019-05-09).
- ^ 郭子伟. 高中基础数列知识微型整理. 数学空间. 2011, (1): 第11页 [2014-07-16]. (原始内容存档于2016-03-04).
- ^ 吴炜超. 数列{n^m.k^n}的求和方法. 数学空间. 2011, (7): 第38–39页.
- ^ 4.0 4.1 黄嘉威. 方幂和及其推广和式. 数学学习与研究. 2016, (7) [2016-05-18]. (原始内容存档于2020-01-15).
- ^ Károly Jordán. Calculus of Finite Differences.
- ^ Murray Spiegel. Schaum's Outline of Calculus of Finite Differences and Difference Equations.
- ^ 刘治国. 一类指数型幂级数的求和. 抚州师专学报. 1994, (01): 第65–66页 [2017-07-23]. (原始内容存档于2019-05-08).
- ^ 吴炜超. 数列不等式的定积分解法. 数学空间. 2011, (5): 第23–26页 [2014-04-10]. (原始内容存档于2015-09-24).